60 research outputs found

    A weighted configuration model and inhomogeneous epidemics

    Full text link
    A random graph model with prescribed degree distribution and degree dependent edge weights is introduced. Each vertex is independently equipped with a random number of half-edges and each half-edge is assigned an integer valued weight according to a distribution that is allowed to depend on the degree of its vertex. Half-edges with the same weight are then paired randomly to create edges. An expression for the threshold for the appearance of a giant component in the resulting graph is derived using results on multi-type branching processes. The same technique also gives an expression for the basic reproduction number for an epidemic on the graph where the probability that a certain edge is used for transmission is a function of the edge weight. It is demonstrated that, if vertices with large degree tend to have large (small) weights on their edges and if the transmission probability increases with the edge weight, then it is easier (harder) for the epidemic to take off compared to a randomized epidemic with the same degree and weight distribution. A recipe for calculating the probability of a large outbreak in the epidemic and the size of such an outbreak is also given. Finally, the model is fitted to three empirical weighted networks of importance for the spread of contagious diseases and it is shown that R0R_0 can be substantially over- or underestimated if the correlation between degree and weight is not taken into account

    Pioneers of Influence Propagation in Social Networks

    Get PDF
    With the growing importance of corporate viral marketing campaigns on online social networks, the interest in studies of influence propagation through networks is higher than ever. In a viral marketing campaign, a firm initially targets a small set of pioneers and hopes that they would influence a sizeable fraction of the population by diffusion of influence through the network. In general, any marketing campaign might fail to go viral in the first try. As such, it would be useful to have some guide to evaluate the effectiveness of the campaign and judge whether it is worthy of further resources, and in case the campaign has potential, how to hit upon a good pioneer who can make the campaign go viral. In this paper, we present a diffusion model developed by enriching the generalized random graph (a.k.a. configuration model) to provide insight into these questions. We offer the intuition behind the results on this model, rigorously proved in Blaszczyszyn & Gaurav(2013), and illustrate them here by taking examples of random networks having prototypical degree distributions - Poisson degree distribution, which is commonly used as a kind of benchmark, and Power Law degree distribution, which is normally used to approximate the real-world networks. On these networks, the members are assumed to have varying attitudes towards propagating the information. We analyze three cases, in particular - (1) Bernoulli transmissions, when a member influences each of its friend with probability p; (2) Node percolation, when a member influences all its friends with probability p and none with probability 1-p; (3) Coupon-collector transmissions, when a member randomly selects one of his friends K times with replacement. We assume that the configuration model is the closest approximation of a large online social network, when the information available about the network is very limited. The key insight offered by this study from a firm's perspective is regarding how to evaluate the effectiveness of a marketing campaign and do cost-benefit analysis by collecting relevant statistical data from the pioneers it selects. The campaign evaluation criterion is informed by the observation that if the parameters of the underlying network and the campaign effectiveness are such that the campaign can indeed reach a significant fraction of the population, then the set of good pioneers also forms a significant fraction of the population. Therefore, in such a case, the firms can even adopt the naive strategy of repeatedly picking and targeting some number of pioneers at random from the population. With this strategy, the probability of them picking a good pioneer will increase geometrically fast with the number of tries

    Viral Marketing On Configuration Model

    Get PDF
    We consider propagation of influence on a Configuration Model, where each vertex can be influenced by any of its neighbours but in its turn, it can only influence a random subset of its neighbours. Our (enhanced) model is described by the total degree of the typical vertex, representing the total number of its neighbours and the transmitter degree, representing the number of neighbours it is able to influence. We give a condition involving the joint distribution of these two degrees, which if satisfied would allow with high probability the influence to reach a non-negligible fraction of the vertices, called a big (influenced) component, provided that the source vertex is chosen from a set of good pioneers. We show that asymptotically the big component is essentially the same, regardless of the good pioneer we choose, and we explicitly evaluate the asymptotic relative size of this component. Finally, under some additional technical assumption we calculate the relative size of the set of good pioneers. The main technical tool employed is the "fluid limit" analysis of the joint exploration of the configuration model and the propagation of the influence up to the time when a big influenced component is completed. This method was introduced in Janson & Luczak (2008) to study the giant component of the configuration model. Using this approach we study also a reverse dynamic, which traces all the possible sources of influence of a given vertex, and which by a new "duality" relation allows to characterise the set of good pioneers

    The front of the epidemic spread and first passage percolation

    Get PDF
    In this paper we establish a connection between epidemic models on random networks with general infection times considered in Barbour and Reinert 2013 and first passage percolation. Using techniques developed in Bhamidi, van der Hofstad, Hooghiemstra 2012, when each vertex has infinite contagious periods, we extend results on the epidemic curve in Barbour Reinert 2013 from bounded degree graphs to general sparse random graphs with degrees having finite third moments as the number of vertices tends to infinity. We also study the epidemic trail between the source and typical vertices in the graph. This connection to first passage percolation can be also be used to study epidemic models with general contagious periods as in Barbour Reinert 2013 without bounded degree assumptions.Comment: 14 page

    Critical behavior in inhomogeneous random graphs

    Get PDF
    We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. The edge probabilities are moderated by vertex weights, and are such that the degree of vertex i is close in distribution to a Poisson random variable with parameter w_i, where w_i denotes the weight of vertex i. We choose the weights such that the weight of a uniformly chosen vertex converges in distribution to a limiting random variable W, in which case the proportion of vertices with degree k is close to the probability that a Poisson random variable with random parameter W takes the value k. We pay special attention to the power-law case, in which P(W\geq k) is proportional to k^{-(\tau-1)} for some power-law exponent \tau>3, a property which is then inherited by the asymptotic degree distribution. We show that the critical behavior depends sensitively on the properties of the asymptotic degree distribution moderated by the asymptotic weight distribution W. Indeed, when P(W\geq k) \leq ck^{-(\tau-1)} for all k\geq 1 and some \tau>4 and c>0, the largest critical connected component in a graph of size n is of order n^{2/3}, as on the Erd\H{o}s-R\'enyi random graph. When, instead, P(W\geq k)=ck^{-(\tau-1)}(1+o(1)) for k large and some \tau\in (3,4) and c>0, the largest critical connected component is of the much smaller order n^{(\tau-2)/(\tau-1)}.Comment: 26 page

    The component sizes of a critical random graph with given degree sequence

    Full text link
    Consider a critical random multigraph Gn\mathcal{G}_n with nn vertices constructed by the configuration model such that its vertex degrees are independent random variables with the same distribution ν\nu (criticality means that the second moment of ν\nu is finite and equals twice its first moment). We specify the scaling limits of the ordered sequence of component sizes of Gn\mathcal{G}_n as nn tends to infinity in different cases. When ν\nu has finite third moment, the components sizes rescaled by n−2/3n^{-2/3} converge to the excursion lengths of a Brownian motion with parabolic drift above past minima, whereas when ν\nu is a power law distribution with exponent γ∈(3,4)\gamma\in(3,4), the components sizes rescaled by n−(γ−2)/(γ−1)n^{-(\gamma -2)/(\gamma-1)} converge to the excursion lengths of a certain nontrivial drifted process with independent increments above past minima. We deduce the asymptotic behavior of the component sizes of a critical random simple graph when ν\nu has finite third moment.Comment: Published in at http://dx.doi.org/10.1214/13-AAP985 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore