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THE FRONT OF THE EPIDEMIC SPREAD

AND FIRST PASSAGE PERCOLATION

SHANKAR BHAMIDI1, REMCO VAN DER HOFSTAD3, AND JÚLIA KOMJÁTHY3

Abstract. In this paper we establish a connection between epidemic models on random networks with general

infection times considered in [2] and first passage percolation. Using techniques developed in [6], when each vertex
has infinite contagious periods, we extend results on the epidemic curve in [2] from bounded degree graphs to general

sparse random graphs with degrees having finite third moments as n → ∞. We also study the epidemic trail between

the source and typical vertices in the graph. This connection to first passage percolation can be also be used to study
epidemic models with general contagious periods as in [2] without bounded degree assumptions.

1. Introduction and model

We consider the spread of an epidemic on the configuration model with i.i.d. infection times having a general
continuous distribution, and an infinite contagious period for each vertex. We describe the link between first passage
percolation (FPP) on sparse random graph models [4, 6], and general epidemics on the configuration model by
Barbour and Reinert [2]. The work in [4, 6] is more general in terms of the graph models allowed, but more restrictive
in terms of the epidemic process, requiring the assumption of infinite contagious periods and i.i.d. infection times,
while the work in [2] allows for more general epidemic processes, but assumes the graphs have bounded degrees.
The main result, Theorem 2.1 below, extends [4, 5, 6] to the study of the epidemic curve in the spirit of [2] by
describing how the infection sweeps through the system. We also investigate the epidemic trail, namely the number
of individuals that spread the infection from the source to the destination. Branching process approximations for
the epidemic process and stable-age distribution theory for the corresponding branching processes developed by
Jagers and Nerman [11, 12, 17] play a critical role in the proof of the main result.

1.1. Configuration model. We first describe the model for the underlying network on which the epidemic process
takes place. The configuration model CMn(d) (see [7] or [10, Chapters 7 and 10]) on n vertices with degree sequence
dn = (d1, . . . , dn) is constructed as follows. Let [n] := {1, 2, . . . , n} denote the vertex set. To each vertex i ∈ [n],
attach di half-edges to that vertex with total degree Ln =

∑
i∈[n] di assumed even (when the degrees di are drawn

independently from some common degree distribution D, Ln may be odd; if so, select one of the di uniformly at
random and increase it by 1).

We number the half-edges in any arbitrary order from 1 to Ln. We start pairing them uniformly at random, i.e.,
we pick an arbitrary unpaired half-edge and pair it to another unpaired half-edge chosen uniformly at random to
form an edge. Once paired, we remove both from the set of unpaired half-edges and continue until all half-edges are
paired. We denote the resulting random multi-graph by CMn(d). Although self-loops and multiple edges may occur,
under weak assumptions on the degree sequence (satisfied via Condition 1.1 below), their number is a tight sequence
as n→∞ (see [14] or [7] for more precise results in this direction).

We consider the configuration model for general degree sequences dn, which may be either deterministic or
random, subject to mild regularity conditions as n→∞. To formulate these conditions, we think of dn = (dv)v∈[n]

as fixed and choose a vertex Vn uniformly from [n]. Then, the distribution of dVn is the degree of a uniformly chosen
vertex Vn, conditional on the degree sequence dn. To ensure that the majority of vertices are connected in the
resulting graph, we assume throughout that dv ≥ 2 for each v ∈ [n] (see e.g. [15] or or [10, Chapter 10]). We make
the following key assumption on the degree sequence:
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2 BHAMIDI, VAN DER HOFSTAD, AND KOMJÁTHY

Condition 1.1 (Degree regularity). The degrees dVn satisfy dVn ≥ 2 a.s. and, for some random variable D with
P(D > 2) > 0 and E(D2 log+(D)) <∞,

dVn
d−→ D, E(d2

Vn)→ E(D2). (1.1)

Furthermore,

lim sup
n→∞

E
(
d2
Vn log+(dVn)

)
= E(D2 log+(D)). (1.2)

When dn is itself random, we require that the convergences in Condition 1.1 hold in probability. Next, we define
the size-biasing D?

n of dVn := Dn by

P(D?
n = k) =

(k + 1)P(Dn = k + 1)

E(Dn)
. (1.3)

It is easily checked that uniform integrability following from Condition 1.1 implies that E[D?
n]→ E[D?] = E[D(D −

1)]/E[D] <∞ where D? is the corresponding size-biasing for D. The assumption dVn ≥ 2 and non-vanishing variance
Var(D) > 0 of the degrees implies that E[D?] > 1.

1.2. Epidemic model. Let us now describe the infection model on CMn(d). Since multiple edges and self-loops
play no role in the dynamics, we replace multiple edges by a single edge and replace self-loops. We also view each edge
e = {u, v} in CMn(d) as two directed edges (u, v) and (v, u). We consider an SIR (Susceptible-Infected-Removed)
process on CMn(d). Fix a continuous distribution G on R+. At time t = 0, start the infection at a uniformly chosen
vertex Vn. Each infected vertex infects its neighbors at times that are i.i.d. with distribution G after the vertex is
infected. This can be modelled by adding i.i.d. edge lengths Xe ∼ G for every directed edge e = (v, u) between a
neighbors u of the vertex v ∈ CMn(d). If each vertex v has an i.i.d. contagious period Cv ≤ ∞ after which it recovers,
then once v gets infected only those neighbours u of v get infected that have an infection time X(v,u) < Cv. We

denote the (possibly non-proper) tail distribution function of C by H̄, i.e. H̄(x) = P(C > x). Finally we assume that
if a vertex has been infected once it cannot be infected again and thus transmits infection to its neighbours at most
once. We let (Fn(t))t≥0 denote this epidemic process. Here for any fixed t ≥ 0, Fn(t) contains the entire sigma-field
of the process till time t, thus containing information not only of the set and number of infected individuals by time
t, but also of the entire sequence of transmissions until this time. We use |Fn(t)| for the total number of infected
individuals by time t, and |An(t)| for the total size of the coming generation: those vertices who are not yet infected
but have an infectious neighbour at time t in the graph who is going to infect them some time after t. Later we will

define a related process (F̃n(t)), Ãn(t))t≥0 representing the collection of individuals that would infect a fixed target
individual w by time t if were the epidemic to start from them, and the corresponding coming generation in this
process. We call this the backward infection process, see Section 4.3 for a precise definition.

2. Results

In this section, we state our main results. Let Pn(s) denote the proportion of vertices infected by time s, i.e.,

Pn(s) =
1

n

∑
w∈[n]

11 {vertex w infected by time s} . (2.1)

We also investigate the number of infected individuals on the path from the initial source of the infection to other
vertices in CMn(d). Since the infection times are continuous random variables, there is a.s. a unique path that
realizes the infection between Vn and any other fixed vertex w ∈ [n], which we call the infection trail to vertex w.
We let Hn(w) denote the number of infectives along the trail to w (including Vn and w), and define

Pn(s, h) =
1

n

∑
w∈[n]

11 {vertex w infected by time s, and Hn(w) ≤ h} . (2.2)

Now fix n ≥ 1. In Section 4 we describe how to couple the epidemic process and the backward infection process

(Fn(t), F̃n(t))t≥0 to two independent Crump-Mode-Jagers processes (BPn(t), B̃Pn(t))t≥0 where each individual from
the first generation onwards produces a random number of children with distribution D?

n with birth times that are
i.i.d. variables with cumulative distribution function G, and with a possibly finite contagious period Cv whose tail
distribution we write as H̄. The root has a slightly different offspring distribution from the rest of the population.

Recall that |An(t)|, |Ãn(t)| stands for the coming generation in the infection processes. Condition 1.1 and standard
results [11, 13] which we describe in Section 4 imply that there exists a constant λn > 0 and limit random variables
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Wn, W̃n > 0 a.s. such that exp{−λnt}(|An(t)|, |Ãn(t)|) a.s.−→ (Wn, W̃n) as t→∞ (see (4.15)), where λn satisfies the
equation

E(D?
n)

∫
R+

e−λnxH̄(x)dG(x) = 1 (2.3)

and further

(Wn, W̃n)
d−→ (W, W̃ ), λn → λ, as n→∞,

where W, W̃ are the corresponding limit random variables for the branching processes (BP(t), B̃P(t))t≥0 described
below in Section 4.1 and 4.4 and λ satisfies (2.3) with D?

n replaced by D?. Let Λ be a standard Gumbel random

variable independent of (S, S̃)
d

:= (− 1
λ logW,− 1

λ log W̃ ). Define the function

P (t) = P
(
S̃ − Λ/λ+ c ≤ t

)
, t ∈ R. (2.4)

Finally let Φ(·) denote the standard normal cdf.
Our main theorem describes the asymptotics for the functions Pn(t), Pn(t, h) and shows that these functions

follow a deterministic curve with a random time-shift corresponding to the initial phase of the infection:

Theorem 2.1 (Epidemic curve). Consider the epidemic spread with i.i.d. continuous infection times on the
configuration model CMn(d) and infinite contagious periods. Assuming condition (1.1), for each fixed t ∈ R, the
proportion of infected individuals satisfies

Pn

(
t+

log n

λn

)
d−→ P (t− S), (2.5)

Further,

Pn

(
t+

1

λn
log n, αn log n+ x

√
β log n

)
d−→ P

(
t− S

)
Φ(x), (2.6)

where αn and β are constants arising from the branching process BPn(·) and BP(·), and are defined below (4.27).

Remark 2.2. Theorem 2.1 implies that the epidemic sweeps through the graph in an almost deterministic fashion,
where the dependence on the initial start of the epidemic only appears in the random shift S in (2.5). Further, (2.6)
implies that the number of infectives needed to reach a typical vertex in the graph is aymptotically independent of
the time at which the vertex is infected. Much information can be read off from the shape of the curve t 7→ P (t).
For example, the fact that in the initial phase, the infection grows exponentially is related to the fact that P (t)
decays exponentially at t = −∞, which, in turn, follows from the fact that P(−Λ/λ+ c ≤ t) decays exponentially for
t large and negative.

Remark 2.3. We believe this connection between first passage percolation and epidemic models used to prove the
above result can easily be generalized to the case with finite contagious times. In this regime, the forward and the
backward branching process have identical Malthusian rates of growth but different limit random variables, see
Section 4.2. This would extend results in [2] where one assumes that the degree of all vertices is bounded by some
constant K to the general configuration model satisfying Condition 1.1.

3. Discussion

Here we briefly describe the connection between our work and related work.

(a) Epidemic models on networks: There is an enormous literature on general epidemic models, their behavior
on various network models and their connections to other dynamic process; see [3, 18] and the references therein
for a description of the motivations from statistical physics and see [8, 9, 1] and references therein for pointers
to more rigorous results. First passage percolation or shortest path problems play an integral role in our study
and we use results in [6] for the analysis of such processes on general sparse graph models with general edge
distributions.

(b) Connection to the results of Barbour and Reinert: In [2], the authors determine the epidemic curve
for a mean-field model with a Poisson number of infections. This case is equivalent to the infection spread
on the Erdős-Rényi random graph. They generalize this to multi-type epidemics, and conclude that a similar
result holds true for the configuration model where every vertex has degree bounded K for some fixed constant
K ≥ 1. This restriction allows them to consider infection rates with arbitrary dependence on the number of
possible infections created by a vertex. They use an associated multi-type branching processes for their analysis.
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Using the connection to first passage percolation, we show that similar results can be derived for any degree
distribution satisfying Condition 1.1.

3.1. Organization of the paper. In Section 4 we give the idea underlying the proof of Theorem 2.1 via the
connection to first passage percolation. The intuitive idea is as follows. The expected proportion of vertices infected
by time t equals the probability that a random individual is infected by time t. Hence, we first prove a crucial
proposition (Prop. 4.3) about the typical distance between two uniformly picked individuals in the graph, and then
we perform first and second moment methods on the empirical proportion of infected individuals to obtain the
epidemic curve. This approach first appeared in [2]. We then explain the idea of the proof of Proposition 4.3 in [6]
and a similar, implicitly given, result in [2]: Both couple the initial phases of the infection to two branching processes,
and describe how these clusters connect up. We explain how the connection happens based on the Bhamidi-van
der Hofstad-Hooghiemstra (BHH) connection process, which proves that the process of possible connection edges
converges to a Poisson process, of which the first point corresponds to the infection time. Essentially the same
Poisson process appears in the connection process of [2], hence we just highlight the differences and similarities
between these two approaches.

4. Proofs

In this section, we provide the proof of our main result Theorem 2.1. We start in Section 4.1 by describing the
connection between exploration process on the configuration model and branching processes. Section 4.2 describes
the relevant forward and backward continuous-time branching processes (CTBPs). Section 4.3 provides the coupling
between the infection process on the configuration model and the CTBPs. Section 4.4, investigates asymptotics for
the CTBPs. Section 4.5 describes how the forward and backward CTBP from two uniform vertices meet. Finally in
Section 4.7 these results are used to prove Theorem 2.1. The intermediate Section 4.6, we intuitively describe how
asymptotics for the connection time is derived by Barbour and Reinert in [2].

4.1. Exploration on the configuration model and branching processes. Consider the epidemic process Fn(·)
with i.i.d. infection times and possibly infinite i.i.d. contagious period Cv ∈ (0,∞], v ∈ [n] with tail distribution H̄.
We shall see how this is connected to a shortest path problem on CMn(d). To each directed edge (v, u) ∈ CMn(d)
assign an independent random edge length X(v,u) with distribution G. The epidemic process can be thought of as a
flow starting at vertex Vn at t = 0 and spreading at rate one through the graph using the corresponding edge-lengths.
When the infection hits a non-source vertex v at time σv, thus infecting vertex v, each neighbor u of v (other than
the neighbor that spread the infection to v) will be infected at time σv +X(v,u) if X(v,u) is less than Cv. Thus the
offspring distribution of new infections created by vertex v – describing the number of infections and infection times
created by v after σv – has the same distribution as

ξv =

dv−1∑
i=1

δXi11{Xi≤Cv}, (4.1)

where dv denotes the degree of v, Xi ∼ G i.i.d. and Cv ∼ H is the contagious period of v.

Local neighborhoods in CMn(d). The initial source Vn of the epidemic is picked uniformly at random from [n]
and thus has degree distribution dVn in Condition 1.1. We next describe the neighborhood of this vertex. By the
definition of CMn(d), we can construct CMn(d) from Vn by sequentially connecting the half-edges of Vn to uniformly
chosen unpaired half-edges. For any j ≥ 1, let N∗j (n) ≈ npj (by Condition 1.1) be the number of vertices with
degree j, where we exclude Vn. Then, for fixed k ≥ 1, the probability that the first half-edge of Vn connects to a
vertex v ∈ [n] \ {Vn} with degree dv = k + 1 equals

(k + 1)N∗k+1(n)∑
v∈[n] dv − 1

≈ (k + 1)P(Dn = k + 1)

E(Dn)
. (4.2)

If Vn connects to such a vertex, then this neighbor has k remaining half-edges that can be used to connect to vertices
in CMn(d). Thus the forward degree of each neighbor Vn has a distribution that is approximately equal to D?

n. The
same is true for the remaining half-edges of Vn and, in fact, the above approximation continues to hold as long as
the neighborhood is not too large. Equation (4.1) and (4.2) suggest that the epidemic process can be approximated
by the following branching process (BPn(t))t≥0 with label set BPn(t) ⊂ V := {0} ∪ ∪∞n=1Nn.
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(i) At time t = 0, start with a single individual ρ = 0 whose offspring distribution is constructed as follows.
First generate dVn possible children and let (X0

i )1≤i≤dVn be i.i.d. with distribution G and independent of

C0 ∼ (1− H̄). Then the children of ρ are the set (0, i) such that Xi < C0, labelled in an arbitrary order. The
interpretation is that each of these vertices are born at time X0

i . Thus the offspring distribution of the root
can be represented as

ξ0 :=

dVn∑
i=1

δXi11{Xi≤C0}. (4.3)

(ii) Every other individual v ∈ V born into the process BPn(·), has i.i.d. offspring distribution ξv with

ξv :=

D?n(v)∑
i=1

δXvi 11{Xvi ≤Cv}, (4.4)

where Cv ∼ (1−H̄) is the contagious period, D?
n(v) has the size-biased distribution (1.3) and Xv

i i.i.d. G. Thus,
conditionally on D?

n(v), a vertex (v, i) ∈ V is born at time Xv
i after vertex v is born if and only if Xi

v ≤ Cv.
When C =∞ this coupling between Fn(·) and the corresponding branching process BPn(·) is carried out in [6,

Section 4]. The details and the corresponding error bounds turn out to be rather technical. We give an intuitive
idea in Section 4.3 and Theorem 4.2 gives a rigorous error bound for their difference.

4.2. Forward and backward processes. In the previous section, we have described the branching process
approximation to the epidemic forward in time. Another key aspect of [2] is the study of the backward branching
process. For a uniformly chosen vertex w ∈ CMn(d) and fixed time t > 0, the vertex w is infected by time t precisely
when there is a chain of infections leading to w. Hence, for large time t, one can ask if w is in the infection process
of one of its neighbours, if that neighbour is in the infection process of one of his neighbours, etc, i.e., we can trace
back the infection path. In [2], this leads to a new approximating branching process, the backward branching process

with offspring process ξ̃[0,∞].

To see the difference between the offspring process ξ going forward and ξ̃ consider the case where all contagious

periods are a.s. finite, i.i.d. having cumulative distribution function H. Then, as before, ξ =
∑D?n
i=1 δXi1{Xi<Cv}

denotes the offspring of the forward process. On the other hand, in the backward process each individual has to be
in the contagious period of its children, thus resulting in the offspring distribution

ξ̃ =

D?n∑
i=1

δXi1{Xi<Ci}, (4.5)

where Ci ∼ H are i.i.d. In more complicated infection models the backward process turns out to be substantially

more complicated to describe. The crucial observation is that in the case (4.5) En(ξ̃(a, b)) = En(ξ(a, b)) for all
0 ≤ a < b ≤ ∞ and thus the corresponding expected reproduction measure µ̃n(dt) and µn(dt) are the same for all
n. This implies that when C <∞, the distribution of the limiting martingale variables defined in (4.15) are not
the same in the forward and backward processes, but the growth rate λn and the multiplying constants for every
characteristic under consideration, (see (4.10)) are the same.

Note that if we take C = ∞, which is what we assume for the rest of the paper, the branching processes
corresponding to the backward and forward processes are the same with offspring distribution

ξ =

D?n∑
i=1

δXi , Xi ∼ G are i.i.d. random variables. (4.6)

From now on every quantity Q̃ corresponds to the quantity Q in the backward process.

4.3. Labeling the BP with half-edges on the configuration model. We now construct CMn(d) along with
the epidemic process Fn(·) on it. First we construct the forward process by describing the sequence of new vertices
that are infected and the times that these vertices get infected. At each step k ≥ 0, one of two things can happen:

(i) Event I: A new vertex gets infected via an active half-edge from the set of currently infected vertices connecting
to a half-edge in the set of susceptible vertices. The rest of the half-edges connected to this newly infected
vertex are now designated to have joined the active half-edges, while the two half-edges that merge to create
this connection are removed.
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(ii) Event II: Occasionally two active half-edges in the infected cluster merge to create a new edge. The number
of times this happens before time tn is a tight random variable. This obviously does not increment the infected
cluster since a new vertex is not added to the cluster.

We now give a precise description of the construction. Let Ln denote the set of half-edges in CMn(d). For x ∈ Ln,
let V (x) ∈ [n] denote the vertex it is attached to, px denote the half-edge it is merged to and let V (px) denote the
vertex incident to this half-edge.

For k = 0, pick the source of the infection Vn ∈ [n] uniformly at random. This vertex has dVn offspring and
is born immediately. Set τ0 = 0,F ′(0) = {Vn}. Check if any of these half-edges are merged amongst themselves
creating self-loops: this happens with probability o(1). The half-edges where this does not take place form the
coming generation Aτ0 with residual times to birth given by Bτ0 := (Bx(τ0))x∈Aτ0 with Bx(τ0) ∼ G i.i.d. For each

x ∈ Aτ0 , the end point V (px) is revealed and infected at time Xx. Write Hτ0 = Ln \ {x : V (x) = Vn} for the initial
set of free half-edges.

For k ≥ 1, the construction proceeds recursively as follows. At this stage, we have the set of active half-edges
Aτk−1

and free half-edges Hτk−1
, as well as residual times of birth of the active half-edges Bτk−1

.

(a) Pick half-edge x?k with shortest residual time to birth: B?k = minBτk−1
and pair it to a uniformly chosen free

half-edge px?k ∈ Hτk−1
∪ Aτk−1

. Update time τk := τk−1 +B?k .
(b) Add the vertex vk := V (px?k) to the infected vertices F ′(τk). Check all other half-edges of vk (other than px?k) to

see if any of them are attached to one of the other active half-edges in Aτk−1
and let V?k denote the residual set

of half edges of vk. More precisely, we draw a Bernoulli variable with success probability equal to the number
of active half-edges over the total number of unpaired half-edges. If the Bernoulli equals 1, then we pair the
half-edge to a uniform active half-edge, if it equals 0, then we do not yet pair it.

(c) Refresh the coming generation: The new set of active half-edges is defined as

Aτk := Aτk−1
∪ V?k \

{
x?k, px?k

}
.

(d) Refresh residual times to birth

Bτk :=
{
Bx(τk−1)−B?k : x ∈ Bτk−1

\ {x?k}
}⋃

{Xy : y ∈ V?k} ,

i.e., we remove B?k from all residual times to birth and add the i.i.d. edge weights Xy for newly active half-edges.
(e) We refresh the free half-edge-set: Hτk := Hτk−1

\ {x : V (x) = vk}, that is, we remove the half-edges of vk.

Let (F ′n(k))k≥0 denote the above discrete-time process. By construction, the following lemma is obvious:

Lemma 4.1. For any t > 0, set k(t) = sup {k : τk ≤ t}. Let F∗n(t) := F ′n(k(t)). Then, for the epidemic process on

CMn(d), the distributional equality (Fn(t))t≥0
d
= (F∗n(t))t≥0 holds.

Coupling to a branching process. In [6, Section 4] it is shown that the above construction of the epidemic
process can be coupled to a branching process BPn(·) where the root has offspring distribution (4.3) and all other
individuals have distribution (4.4) (both with Cv =∞). The intuitive idea is as follows: for the two events above;
Events I correspond to creation of new vertices both in Fn and BPn while Events II correspond to the creation
of artificial vertices in BPn. Now let BP denote the (n-independent) branching process where the offspring
distributions in (4.3), (4.4), we replace dVn , D

?
n by their distributional limits D,D?. Let dTV (·, ·) denote total

variation distance between these mass functions on N. Define tn, sn →∞ with {sn}n≥1 being a sequence satisfying

tn = log n/λn, eλsndTV(D?
n, D

?)→ 0. (4.7)

Proposition 4.2 ([6, Prop 2.4]). There exists a coupling of the processes (Fn(t))0≤t≤sn and (BP(t))0≤t≤sn such
that

P
(

(Fn(t))0≤t≤sn 6= (BP(t))0≤t≤sn

)
→ 0 as n→∞.

Further, there exists a coupling between Fn and BPn such that the above bound holds with BP replaced with BPn.

Exploration of the backward infection process. After time t?n ≈ 1
2λn

log n specified later, we freeze the forward
cluster. The ‘half-edges sticking out’ of this cluster namely the set of active edges are exactly the ones in the coming
generation At?n . We start labelling the backward process conditional on the presence of the forward process. This
labelling is slightly different than the labelling of the forward cluster, since we also want to keep track when we
connect to a half-edge in the coming generation At?n .

At each step k ≥ 0, three things can happen in the backward process: Event I and II defined above in the forward
process or
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(iii) Event III: Occasionally we pair a half-edge in the backward cluster to a half-edge in the coming generation of
the forward cluster At?n . This means that a collision happens between the two processes.

We now give a precise description of the construction.

For k = 0, pick the source of the backward-infection Ṽn ∈ [n] \ {Fn(t?n)} uniformly. This vertex has dṼn offspring

and is born immediately. Set τ̃0 = 0. Pair the dṼn outgoing half-edges immediately, uniformly at random without
replacement from At?n ∪Ht?n . Check if any of these half-edges are merged amongst themselves creating self-loops
(Event II) or collision edges (Event III). Set the collision edges and residual collision times and the coming generation
or active edges for Event I by

C0 := {((y, py), Bpy (t?n)) : V (y) = Ṽn, py ∈ At?n},

Ã0 := {(y, py) : V (y) = Ṽn, py /∈ At?n , V (py) 6= Ṽn}.

For Event III: if there is a (y, py) with py ∈ At?n forms an edge between Ṽn and the forward cluster. From this edge
there is already some time ’eaten up’ by the forward cluster: the remaining time on this edge is Bpy (t?n). Remove
Event II pairs (y, py) from the set of active edges: they form a self-loop. For Events I, the initial remaining times to

birth B̃0 := {Bx(τ̃0), x ∈ Ã0} with Bx(τ̃0) ∼ G i.i.d. For each y ∈ Ã0, the end point V (py) is revealed immediately
but infected only at time Xy. The initial set of free half-edges is

H̃0 =
(
At?n ∪Ht?n

)
\
(
{y : V (y) = Ṽn} ∪ {py : V (y) = Ṽn}

)
.

In more detail, we remove from At?n ∪Ht?n the half-edges of Ṽn and their pairs. For k ≥ 1 the construction proceeds

as follows. At this stage we have the set of active edges Ãτ̃k−1
and free half-edges H̃τ̃k−1

as well as residual times of

birth of the active edges B̃τ̃k−1
. This is described in the following process:

(a) Pick an active edge (x̃?k, px̃?k) ∈ Ãτ̃k−1
with shortest residual time to birth: B̃?k = min B̃τ̃k−1

.

(b) Set the time τ̃k := τ̃k−1 + B̃?k .

(c) Add the vertex ṽk := V (px̃?k) to the infected vertices F̃(τ̃k)

(d) refresh the coming generation and the collision edges: pair all half-edges y : V (y) = ṽk sequentially to a uniformly

chosen half-edge py ∈ H̃τ̃k−1
∪ Ãτk−1

.
The new set of collision and active edges is defined as

Cτ̃k := Cτ̃k−1
∪ {((y, py), Bpy (t?n)) : V (y) = ṽk, py ∈ At?n},

Ãτ̃k := Ãτk ∪
{

(y, py) : V (y) = ṽk, py /∈ At?n ∪ Ãτ̃k−1

}
\
{
x?k, px?k

}
,

namely, the new collision edges are those among the dṽk − 1 newly found half-edges whose pair is an active

half-edge in the forward process, and the remaining time on this edge is Bpy (t?n). If py ∈ Ãτk−1
, then Event II

happens: we have found a cycle. If none of this is the case, then the edge (y, py) becomes an active edge with
residual time to birth By = Xy ∼ G i.i.d.

(e) Refresh the residual times to birth

B̃τk :=
{
Bx(τ̃k−1)− B̃?k : x ∈ B̃τ̃k−1

\ {x̃?k}
}⋃{

Xy : V (y) = ṽk, y 6= px̃?k , py /∈ At?n ∪ Ãτ̃k−1

}
.

That is, we subtract B?k from all residual times to birth and add the i.i.d. edge weights Xy for newly active
edges (but we do not add the remaining time of collision edges and we remove cycle-edges too).

(f) Refresh the free half-edge-set: H̃τk = H̃τk−1
\ ({y : V (y) = ṽk}∪{py : V (y) = ṽk}), namely remove the half-edges

of ṽk and their pairs.

The main difference of this process and the forward process is that here we pair the new outgoing half-edges
y ∈ {1, . . . , dṽk − 1} immediately at the birth of ṽk, and we check if this edge collides with the forward cluster or
becomes active. (Hence in the backward process, the pairs (x, px) form the coming generation.) The statement of
Proposition 4.2 remains valid for this process as well, i.e. the coupling between the backward cluster and BP can be
established.
The total length of collisions. A collision happens at time τ̃k for some k if the vertex ṽk has a half-edge y with
a pair py ∈ At?n of the forward process. Since we check this exactly at the time when ṽk becomes infected, and there
is still a residual time Bpy (t?n) on this edge, the length of this connection is exactly t?n +Bpy (t?n) + τ̃k.
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Note that py is a uniformly picked half-edge from the coming generation At?n , hence its residual time to birth
Bp?y(t?n) converges to the empirical residual time to birth distribution in (4.17) below. Also note that this is

independent of the backward process infection time τ̃k.

4.4. Branching processes. In this section we set up the branching process objects including the stable-age
distribution theory [17] required to prove the result. Fix a point process ξ on R+ and consider a branching process
BP(·) with vertex set a subset of N := {0} ∪ ∪∞n=1Nn, started with one individual 0 at t = 0 with each vertex
having an i.i.d. copy of ξ. Here an individual is labeled x = (i1i2, . . . , in) if x is the inth child of the in−1th child of
. . . of the i1th child of the root. For t ≥ 0, let ξ[t] denotes the number of points in [0, t]. Write µ(t) = E[ξ(t)] for
the corresponding intensity measure. Assume µ(·) is non-lattice, there exists a Malthusian parameter λ ∈ (0,∞)
satisfying ∫ ∞

0

e−λtµ(dt) = 1, (4.8)

and with integrability assumptions for this parameter λ,

m? :=

∫ ∞
0

te−λtµ(dt) <∞, E
(∫ ∞

0

e−λtξ(dt) · log+

(∫ ∞
0

e−λtξ(dt)

))
<∞. (4.9)

For v ∈ BP, write σv for its birth time and ξv for its offspring process. Let {{φv(·)} : v ∈ BP} be a family of i.i.d.
stochastic processes with {φv(t) : t ≥ 0} measurable with respect to the offspring distribution ξv, φv(t) ≥ 0 for t ≥ 0
and let φv(s) = 0 for s < 0. The interpretation of such a functional, often called a characteristic [11, 17, 13] is that
it assigns a score φv(t) when vertex v has age t. We write φ := φ0 to denote this process for the root. The branching
process counted according to this characteristic is defined as

Zφt :=
∑

x∈BP(t)

φx(t− σx).

Theorem 5.4 and Corollary 5.6 in [17] shows that there exists a random variable W ≥ 0 with E[W ] = 1 such that for
any characteristic φ satisfying mild integrability conditions one has

e−λtZφt −→W ·
∫∞

0
e−λtE(φ(t))dt

m?
a.s. (4.10)

Moreover, for two characteristics φ1 and φ2 we have

Zφ2

t

Zφ1

t

−→
∫∞

0
e−λtE(φ2(t))dt∫∞

0
e−λtE(φ1(t))dt

a.s. on {W > 0}. (4.11)

Now we apply this general theory for our epidemic - exploration process on CMn(d). We fix n first. Recall
that the epidemic process Fn(·) on CMn(d) is approximated by a branching process BPn with offspring process

ξ =
∑D?n
i=1 δXi . There is a slight modification for the distribution of the root, however this does not effect the limit

theorems above (other than the limit random variable having E(Wn) 6= 1). Recall the Malthusian rate of growth
parameter λn from (2.3). The other parameters (with n fixed) are calculated as

µn(t) := E(D?
n)

∫ t

0

H̄(x)G(dx), µn(dt) := E(D?
n)H̄(t)G(dt), m?

n = E(D?
n)

∫ ∞
0

te−λntH̄(t)G(dt). (4.12)

The parameter m?
n is called the mean of the stable age distribution or mean age at childbearing. In order

to establish the connection between two infected clusters in the graph, we shall need the size of the so called
coming generation (i.e., those individuals who will be born after time t but their mother was born before time
t), and the empirical distribution of the residual time to birth of a uniformly picked individual in the coming
generation. Asymptotics for these objects are derived by choosing appropriate characteristics. Fix s > 0. If we set

φs(t) := ξ[t+ s,∞) then Zφ
s

t =
∑
x∈F ξx[t− σx + s,∞] counts the number of children of already born individuals

whose birth date is at least s time units from now. In particular, we write Adt := Zφ0

t =
∑
x∈F ξx[t − σx,∞]

counting the size of the coming generation (usually referred to as alive individuals in CTBP literature) in a BP with
reproduction measure µn in (4.12). (We add the superscript d for delaying the process by one generation, i.e. the
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root here has also µn) We calculate using (4.12) that in our case E(φ0) = E(D?
n) ·

∫∞
t
H̄(x)G(dx) hence:

e−λntAdt = e−λntZφ0

t −→W d
n ·
∫∞

0
e−λntE(D?

n)
∫∞
t
H̄(x)G(dx)dt

m?
n

= W d
n ·

E(D?
n)
∫∞

0
H̄(x)G(dx)− 1

m?
nλn

= W d
n ·

µn(∞)− 1

m?
nλn

a.s.

(4.13)

Now, to match the BP to the exploration process Fn(t) on CMn(d) to have the same reproduction function at the
root, we introduce the following BP via the size of the coming generation by

At :=

Dn∑
i=1

(
1{t<Xi<Cv} +A

d,(i)
t−Xi1{Xi<t∧Cv}

)
,

where A
d,(i)
t are i.i.d. copies of Adt in (4.13). At corresponds to |An(t)|, i.e. the number of active half-edges in Fn(t).

Multiplying by e−λnt and using (4.13) gives the convergence

e−λntAt = e−λnt
Dn∑
i=1

1{t<Xi<Cv} +

Dn∑
i=1

e−λnXi1{Xi<t∧Cv}

(
e−λn(t−Xi)A

d,(i)
t−Xi

)
a.s.−→

Dn∑
i=1

e−λnXi1{Xi<Cv}W
d,(i)
n

µn(∞)− 1

λnm?
n

,

(4.14)

with W
d,(i)
n i.i.d. copies of W d

n . Since E(e−λnXi1{Xi<Cv}) = 1
E(D?n) by (2.3), and Xi is independent of W

d,(i)
n , we

can introduce the limiting random variable Wn in (2.3):

Wn :=

Dn∑
i=1

e−λnXi1{Xi<Cv}W
d,(i)µn(∞)− 1

λnm?
n

, (4.15)

and then (4.14) implies

e−λntAt
a.s.−→Wn with E[Wn] =

E[dVn ](µn(∞)− 1)

E[D?
n]λnm?

n

. (4.16)

For infinite contagious period we have µn(∞) − 1 = E[D?
n − 1]. The ratio convergence in (4.11) and E(φs) =

E(D?
n) ·

∫∞
t+s

H̄(x)G(dx) implies that the empirical ‘residual time to birth’ distribution converges to a random
variable:

Zφst

Zφ0

t

a.s.−→
E(D?

n)
∫∞

0
e−λnt

∫∞
t+s

H̄(x)G(dx)dt

E(D?
n)
∫∞

0
e−λnt

∫∞
t
H̄(x)G(dx)dt

=
E(D?

n)

µ(∞)− 1

∫ ∞
s

(1− eλn(s−x))H̄(x)G(dx) := 1− F (n)

R (s). (4.17)

This is the limiting probability that a uniformly picked individual from the ‘coming generation’ will be born after an
extra s time units.

Now we have set the stage for the branching processes that approximate the initial phase of the infection and the
backward infection process. We are ready to state the main proposition on which our proof of the epidemic curve
is based. Let us denote the infection time from v to w by Ln(v, w). (The first part of this proposition is part of
Theorem 1.2 in [6], the second is a two-vertex analogue of it that can be proved in a similar way.) In its statement,
and for s > 0, we let Gn(s) denote the σ-algebra of all vertices that are infected before time s, as well as all edge
weights of the half-edges that are incident to such vertices. Thus, as opposed to Fn(s) which has information only
about the sequence of transmissions that have transpired before time s, Gn(s) also contains information about the
“coming generation” of infections.

Proposition 4.3. Take sn as in Proposition 4.2. The shortest infection path between two uniformly picked vertices

Vn and Ṽn satisfies

P

(
Ln(Vn, Ṽn)− log n

λn
+

logWsn

λn
+

log W̃sn

λn
< t

∣∣∣ Gn(sn), G̃n(sn)

)
d−→ P(−Λ/λ+ c < t). (4.18)



10 BHAMIDI, VAN DER HOFSTAD, AND KOMJÁTHY

Further, with Vn, Ṽ (1)
n and Ṽ (2)

n three independent uniform vertices in [n], and their forward and backward infection

processes Gn(sn), G̃(1)
n (sn), G̃(2)

n (sn),

P
(
Ln(Vn, Ṽ

(i)

n )− log n

λn
+

logWsn

λn
+

log W̃ (i)
sn

λn
< t, i = 1, 2

∣∣∣ Gn(sn), G̃(1)

n (sn), G̃(2)

n (sn)
)

d−→ P(−Λ/λ+ c < t)2. (4.19)

4.5. The Bhamidi-van der Hofstad-Hooghiemstra connection process. In this section, we describe the
results on the connection process in [6]. We start by setting the stage. Fix the deterministic sequence sn →∞ as in
Proposition 4.2. Then, define

tn =
1

2λn
log n, t̄n =

1

2λn
log n− 1

2λn
log
(
WsnW̃sn

)
. (4.20)

Note that eλntn =
√
n, so that at time tn, both Fn(tn), F̃n(tn) have size of order

√
n; consequently the variable tn

denotes the typical time when collision edges start appearing. The time t̄n incorporates for stochastic fluctuations in
the size of these infected (and backward-infected) clusters.

By Proposition 4.2, sn → ∞ is such that Fn(sn) and F̃n(sn) for t ≤ sn can be coupled with two independent

CTBPs. For the present part, it is crucial that the forward CTBP from Vn and the backward CTBP from Ṽn are
run simultaneously. That is, we run the two exploration processes described in Section 4.3 at the same time.

We say that an edge is a collision edge when, upon pairing it, it connects to a half-edge in the other CTBP,
i.e., either a half-edge in the coming generation of the forward cluster of Vn pairs to a half-edge in the coming

generation of the backward cluster of Ṽn, or the other way around. The main result in this section describes the
limiting stochastic process of the appearance of the collision edges, as well as their properties. In order to do so, we
introduce some more notation.

Denote the ith collision edge by (xi, pxi), where pxi is an active half-edge (either in the forward or in the backward
cluster) and xi the half-edge which pairs to pxi . Further, let T (col)

i denote the time at which the ith collision edge is
formed, which is the same as the birth time of the vertex incident to xi. We let R

T
(col)
i

(pxi) be the remaining life

time of the half-edge pxi , which, by construction is equal to the time after time 2T (col)

i that the edge will be found
completely by the flow. Thus, the path that the edge (xi, pxi) completes has length equal to 2T (col)

i +R
T

(col)
i

(pxi) and

it has H(xi) +H(pxi) + 1 edges, where H(xi) and H(pxi) denote the number of edges between the respective roots
and the vertices incident to xi and pxi , respectively. We conclude that the shortest weight path has weight equal to

Ln(VnṼn) = mini≥1[2T (col)

i +R
T

(col)
i

(pxi)]. Let J be the minimizer of this minimization problem. Then, the number

of edges is equal to Hn = H(xJ) +H(pxJ ) + 1. Finally, for a collision edge (xi, pxi), we let I(xi) = 1 when xi is

incident to a vertex that is part of Fn(T (col)

i ) and I(xi) = 2 when xi is incident to a vertex that is part of Ãn(T (col)

i ).
In order to describe the properties of the shortest weight path, we define

T̄ (col)

i = T (col)

i − t̄n, H̄(or)

i =
H(xi)− tn/m?

n√
(σ?n)2tn/(m?

n)3
, H̄(de)

i =
H(pxi)− tn/m?

n√
(σ?n)2tn/(m?

n)3
, (4.21)

where m?
n is the mean of the stable-age distribution in (4.12), while σ?n is its standard deviation.

We write the random variables (Ξi)i≥1 with Ξi ∈ R× {1, 2} × R× R× [0,∞), by

Ξi =
(
T̄ (col)

i , I(xi), H̄
(or)

i , H̄(de)

i , R
T

(col)
i

(pxi)
)
. (4.22)

Then, for sets A in the Borel σ−algebra of the space S := R× {1, 2} × R× R× [0,∞), we define the point process

Πn(A) =
∑
i≥1

δΞi(A), (4.23)

where δx gives measure 1 to the point x. Let M(S) denote the space of all simple locally finite point processes
on S equipped with the vague topology (see e.g. [16]). On this space one can naturally define the notion of weak
convergence of a sequence of random point processes Πn ∈ M(S). This is the notion of convergence referred to
in the following theorem. In the theorem, we let Φ denote the distribution function of a standard normal random
variable. Finally, we define the density fR of the limiting residual time to birth distribution FR in (4.17) given by

fR(x) =

∫∞
0

e−λyg(x+ y) dy∫∞
0

e−λy[1−G(y)] dy
. (4.24)
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Then, our main result about the appearance of collision edges is the following theorem:

Theorem 4.4 (PPP limit of collision edges). Consider the distribution of the point process Πn ∈M(S) defined in

(4.23) conditional on ((Fn(s), F̃n(s)))s∈[0,sn] such that Wsn > 0 and W̃sn > 0. Then Πn converges in distribution as
n→∞ to a Poisson Point Process (PPP) Π with intensity measure

λ(dt× i× dx× dy × dr) =
2E[D?]fR(0)

E[D]
e2λtdt⊗ {1/2, 1/2} ⊗ Φ(dx)⊗ Φ(dy)⊗ FR(dr). (4.25)

Write the points in the above PPP as (Pi)i≥1. In [6], it is shown that Theorem 4.4 implies that Ln(Vn, Ṽn)−2t̄n
d−→

mini≥1[2Pi +Ri]. Further, it follows that

min
i≥1

(2Pi +Ri)
d
= −Λ/λ− log(E[D?]fR(0)B/E[D])/λ, (4.26)

with B =
∫∞

0
FR(z)e−λz dz = m?/E[D? − 1], where m? is the mean of the so-called stable-age distribution in

(4.12). In [6, Lemma 2.3], it is shown that fR(0) = λ/E[D? − 1], so that c = − log(E[D?]fR(0)B/E[D])/λ =
log(E[D]E[D? − 1]2/(λE[D?]m?))/λ.

Here we thus see that the Gumbel distribution arises from the minimization of the points of the PPP (2Pi+Ri)i≥1.
Interestingly, the Gumbel distribution also arises in mini≥1 Pi, but with a different constant c. Thus, the addition of

the residual life-time only changes the constant. Since 2(t̄n − tn)
d−→ 1

λ log
(
WW̃

)
, this proves that

Ln(Vn, Ṽn)− 2tn = min
i≥1

[2T (col)

i +R
T

(col)
i

(pxi)]− 2tn
d−→ −Λ/λ+ c+

1

λ
log
(
WW̃

)
. (4.27)

Also, by (4.21), the trail of the epidemic, which is equal to Hn = H(xJ) + H(pxJ ) + 1, satisfies that (Hn −
2tn/m

?
n)/
√

(σ?n)2tn/(m?
n)3 converges in distribution to the sum of two i.i.d. standard normal random variables,

where m?
n is the mean of the stable-age distribution in (4.12), while σ?n is its standard deviation. This explains (2.6),

and identifies αn = 1/(λnm
?
n) and β = (σ?)2/[λ(m?)3], where m? = limn→∞m?

n and σ? = limn→∞ σ?n.
To prove Theorem 4.4, we investigate the expected number of collision edges that are created. The branching

process theory in Section 4.4 suggests that when a collision edge occurs, the generation of both vertices that are
part of the collision edge satisfies a central limit theorem. Further, the residual time to birth of the active half-edge
to which we have paired the newly found half-edge converges in distribution to the residual life-time distribution.
Thus, we only need to argue that the stochastic process that describes the times of finding the collision edges and

centered by t̄n as in (4.21) converges to a PPP with intensity measure t 7→ 2E[D?]fR(0)
E[D] e2λt. For this, we note that

the rate at which new half-edges are found at time t + t̄n is roughly equal to 2fR(0)|An(t + t̄n)||Ãn(t + t̄n)|/Ln,
where the factor fR(0) is due to the fact that half-edges with remaining life-time equal to 0 are the ones to die, and

the factor 2 due to the fact that Fn as well as F̃n can give rise of the birth of the half-edge.

Here we also note that |An(t+ t̄n)| and |Ãn(t+ t̄n)| are of order
√
n, and thus the total number of half-edges is

equal to Ln(1 + oP(1)).) When a half-edge dies, it has a random number of children with distribution close to D?
n,

and each of the corresponding half-edges can create a collision edge, hence we add an extra E[D?
n] factor. Further,

we can approximate Ln ≈ nE[Dn], |An(t)| ≈ eλntWsn and |Ãn(t)| ≈ eλntW̃sn , so that, using (4.20),

E[D?
n]fR(0)|An(t+ t̄n)||Ãn(t+ t̄n)|

Ln
≈ E[D?

n]fR(0)

E[D]n
e2λn(t+t̄n)WsnW̃sn =

E[D?
n]fR(0)

E[Dn]
e2λnt. (4.28)

This explains Theorem 4.4.

4.6. The Barbour-Reinert connection process - differences. The main difference between the Barbour-
Reinert proof of Proposition 4.3 and the previous section is that in the proof in [2], the forward and the backward
cluster are run after each other, not simultaneously:

We couple the infection process together with the exploration on CMn(d) to the forward BP with small errors
up to time t?n := τ√n in the forward process (τ√n denotes the time when the

√
nth vertex enters the infection),

which we freeze after this time. We then couple the backward process conditionally on the frozen cluster of forward
process up to time 1

2λn
log n+K time for some large K > 0. Then, by (4.16) we see that for any u ∈ R, at time

tn(u) := 1
2λn

log n + u the size of the coming generation in the forward process is |Aτ√n | = cAn
√
n(1 + o(1)) for a

specific constant cAn and the size of the backward cluster is |Ãtn(u)| = cAn
√
neλuW̃tn(u)(1 + o(1)). From here the
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formation of collision edges leads to a similar two dimensional Poisson process to the one described as the first and

last coordinate in (4.25), i.e. here the intensity measure, conditioned on W̃sn is given by

E[D?]fR(0)

E[D]
eλxW̃sndx⊗ FR(dy).

From here onwards, the two proofs are essentially the same: the factor W from the forward process appears it the
formula τ√n ≈ 1

2λn
log n− 1

λ logWsn . The minimisation problem (4.26) is then solved by calculating the probability
that there are no PPP points in the infinite triangle x+ y ≤ t, yielding the statement of Proposition 4.3.

4.7. Proof of Theorem 2.1. In Sections 4.5 and 4.6 we gave two possible ways to determine the length of the
shorts infection path between two uniformly chosen vertices. Now we use Proposition 4.3 to explain how to get the
epidemic curve in Theorem 2.1 and complete its proof.

The proof of Theorem 2.1 will be based on the following key proposition that we prove below. Let sn →∞ as
in Proposition 4.2, and denote Wsn = e−snλn |Asn |, where, as before, |At| is the size of the coming generation of
infected individuals at time t.

Proposition 4.5 (The epidemic curve with an offset). Under Condition (1.1), consider the epidemic spread with
i.i.d. continuous infection times on the configuration model CMn(d). For every t > 0,

Pn

(
t+

log n

λn
− logWsn

λn
, αn log n+ x

√
β log n

)
P−→ P (t)Φ(x). (4.29)

Proof of Theorem 2.1 subject to Proposition 4.5. Fix x ∈ R. Since t 7→ Pn(t, v) is non-decreasing, and since the limit
t 7→ P (t) in (4.29) is non-decreasing, continuous and bounded, Proposition 4.5 implies that the covergence in (4.29)
holds uniform in t, i.e., we have

sup
s∈R

∣∣∣Pn(s+
log n

λn
− logWsn

λn
, αn log n+ x

√
β log n

)
− P (s)Φ(x)

∣∣∣ P−→ 0. (4.30)

Applying this to s = t+
logWsn

λn
, we thus obtain that

Pn

(
t+

log n

λn
, αn log n+ x

√
β log n

)
= P (t+

logWsn

λn
)Φ(x) + oP(1). (4.31)

Since
logWsn

λn

d−→ logW
λ = −S and t 7→ P (t) in continuous, this completes the proof of Theorem 2.1. �

Proof of Proposition 4.5. We next complete the proof of Proposition 4.5 using Proposition 4.3. We perform a second

moment method on Pn

(
t+ logn

λn
− logWsn

λn
, αn log n+ x

√
β log n

)
, conditionally on Gn(sn). To simplify notation, we

will take x =∞, Sn = − logWsn

λn
, S̃n = − log W̃sn

λn
and show that

E
[
Pn

(
t+ log n/λn + Sn

)
| Gn(sn)

]
P−→ P (t), E

[
Pn

(
t+ log n/λn + Sn

)2

| Gn(sn)
]

P−→ P (t)2. (4.32)

Equation (4.32) implies that, conditionally on Gn(sn), Pn

(
t+ log n/λn + Sn

)
P−→ P (t), as required. We start by

identifying the first conditional moment. For this, we note that

E
[
Pn

(
t+ log n/λn + Sn

)
| Gn(sn)

]
=

1

n

∑
w∈[n]

P
(
Ln(Vn, w) ≤ t+ log n/λn + Sn | Gn(sn)

)
= P

(
Ln(Vn, Ṽ

(1)

n )− log n/λn − Sn ≤ t | Gn(sn)
)
, (4.33)

where Ṽ (1)
n is a uniform vertex independent of Vn and Ln(v, w) is the time that the infection starting from v reaches

w. Thus, in the infinite-contagious period case, Ln(v, w) is nothing but the first-passage time from v to w. For

s > 0, let G̃(1)
n (s) denote the σ-algebra of all vertices that would infect Ṽ (1)

n within time s if the infection started from
them at time 0, as well as all edge weights of the edges that are incident to such vertices. Thus, by the argument
about the backward process in Section 4.2, these vertices are the same as the vertices that would be infected before

time s from an infection started from Ṽ (1)
n in the backward process.
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Write W̃sn = e−λnsn |Ãsn |, where Ãt denotes half-edges that are in the coming generation of the backward

infection process of Ṽ (1)
n at time t. We now further condition on G̃(1)

n (s), and obtain

E
[
Pn

(
t+ log n/λn + Sn

)
| Gn(sn)

]
= E

[
P
(
Ln(Vn, Ṽ

(1)

n )− log n/λn − Sn ≤ t | Gn(sn), G̃(1)

n (sn)
)
| Gn(sn)

]
. (4.34)

By Proposition 4.3 there exists a constant c > 0 such that

P
(
Ln(Vn, Ṽ

(1)

n )− log n/λn − Sn − S̃n ≤ t | Gn(sn), G̃(1)

n (sn)
)

P−→ P(−Λ/λ+ c ≤ t). (4.35)

Again, since t 7→ P(−Λ/λ+ c ≤ t) is increasing and continuous, the above convergence even holds uniformly in t,
i.e.,

sup
t∈R

∣∣∣P(Ln(Vn, Ṽ
(1)

n )− log n/λn − Sn − S̃n ≤ t | Gn(sn), G̃(1)

n (sn)
)
− P(−Λ/λ+ c ≤ t)

∣∣∣ P−→ 0. (4.36)

As a result,

E
[
Pn

(
t+ log n/λn + Sn

)
| Gn(sn), G̃(1)

n (sn)
]

= P
(
Ln(Vn, Ṽ

(1)

n )− log n/λn − Sn ≤ t | Gn(sn), G̃(1)

n (sn)
)

(4.37)

= P(−Λ/λ+ c ≤ t− S̃n | G̃(1)

n (sn)) + oP(1),

and since W̃sn
P−→ W̃ and t 7→ P(−Λ/λ+ c ≤ t) is continuous and bounded, we obtain that

E
[
Pn

(
t+ log n/λn + Sn

)
| Gn(sn)

]
P−→ P(−Λ/λ+ c ≤ t− S̃) = P (t). (4.38)

By bounded convergence, this also implies that

E
[
Pn

(
t+ log n/λn + Sn

)
| Gn(sn)

]
P−→ P (t), (4.39)

which completes the proof of the convergence of the first moment.
We use similar ideas to identify the second conditional moment, for which we start by writing

E
[
Pn

(
t+ log n/λn + Sn

)2

| Gn(sn)
]

(4.40)

=
1

n

∑
i,j∈[n]

P
(
Ln(Vn, i) + log n/λn + Sn ≤ t, Ln(Vn, j) + log n/λn + Sn ≤ t | Gn(sn)

)
= P

(
Ln(Vn, Ṽ

(1)

n ) + log n/λn + Sn ≤ t, Ln(Vn, Ṽ
(2)

n ) + log n/λn + Sn ≤ t | Gn(sn)
)
,

where Vn, Ṽ
(1)
n , Ṽ (2)

n are three i.i.d. uniform vertices in [n]. For s > 0 and j ∈ {1, 2}, let G̃(j)
n (s) denote the σ-algebra

of all vertices that would infect Ṽ (j)
n within time s if the infection started from them at time 0, as well as all edge

weights of the edges that are incident to such vertices. Thus, these vertices are the same as the vertices that would

be infected before time s in the backward infection process started from Ṽ (j)
n .

Write W̃ (j)
sn = e−λnsn |Ã(j)

sn |, S̃
(i)
n = − log W̃ (i)/λn. We now further condition on G̃(1)

n (sn) and G̃(2)
n (sn), and obtain

E
[
Pn

(
t+ log n/λn − Sn

)
| Gn(sn)

]
(4.41)

= E
[
P
(
Ln(Vn, Ṽ

(1)

n )− log n/λn − Sn ≤ t, Ln(Vn, Ṽ
(2)

n )− log n/λn − Sn ≤ t | Gn(sn), G̃(1)

n (sn), G̃(2)

n (sn)
)
| Gn(sn)

]
.

By (4.19) in Proposition 4.3, there exists a constant c > 0 such that

P
(
Ln(Vn, Ṽ

(i)

n )− log n/λn − Sn − S̃(i)

n ≤ t, i = 1, 2 | Gn(sn), G̃(1)

n (sn), G̃(2)

n (sn)
)

P−→ P(−Λ/λ+ c ≤ t,−Λ′/λ+ c ≤ t)2 = P(−Λ/λ+ c ≤ t)2, (4.42)

since Λ,Λ′ are two independent Gumbel variables. Now the argument for the first moment can be repeated to yield

E
[
Pn

(
t+ log n/λn + Sn

)2

| Gn(sn)
]

P−→ P (t)2, (4.43)

which completes the proof of the convergence of the second moment for x =∞.
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The extension to x <∞ follows in an identical fashion, now using that by [6, Theorem 2.2],

P
(
Ln(Vn, Ṽ

(1)

n )− log n/λn − Sn − S̃n ≤ t,Hn(Vn, Ṽ
(1)

n ) ≤ αn log n+ x
√
β log n | Gn(sn), G̃(1)

n (sn)
)

P−→ P(−Λ/λ+ c ≤ t)Φ(x), (4.44)

as well as a three vertex extension involving Vn, Ṽ
(1)
n and Ṽ (2)

n . We omit further details. �
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