304 research outputs found

    Secure policies for the distributed virtual machines in mobile cloud computing

    Get PDF
    Mobile Cloud Computing (MCC) is a combination of cloud computing and mobile computing through wireless technology in order to overcome mobile devices' resource limitations. In MCC, virtualization plays a key role whereas the cloud resources are shared among many users to help them achieve an efficient performance and exploiting the maximum capacity of the cloud’s servers. However, the lack of security aspect impedes the benefits of virtualization techniques, whereby malicious users can violate and damage sensitive data in distributed Virtual Machines (VMs). Thus, this study aims to provide protection of distributed VMs and mobile user’s sensitive data in terms of security and privacy. This study proposes an approach based on cloud proxy known as Proxy-3S that combines three security policies for VMs; user’s access control, secure allocation, and secure communication. The Proxy-3S keeps the distributed VMs safe in different servers on the cloud. It enhances the grants access authorization for permitted distributed intensive applications’ tasks. Furthermore, an algorithm that enables secure communication among distributed VMs and protection of sensitive data in VMs on the cloud is proposed. A prototype is implemented on a NetworkCloudSim simulator to manage VMs security and data confidentiality automatically. Several experiments were conducted using real-world healthcare distributed application in terms of efficiency, coverage and execution time. The experiments show that the proposed approach achieved lower attacker’s efficiency and coverage ratios; equal to 0.35 and 0.41 respectively in all experimented configurations compared with existing works. In addition, the execution time of the proposed approach is satisfactory ranging from 441ms to 467ms of small and large cloud configurations. This study serves to provide integrity and confidentiality in exchanging sensitive information among multistakeholder in distributed mobile applications

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    Toolbox application to support and enhance the mobile device forensics investigation process - breaking through the techniques available

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceOne of the main topics that is discussed today is how can a person leverage on technology on a positive and secure way in order to enhance their daily life, making it a healthier, more productive, joyful and easier. However, with improvements in technology, comes challenges for which there is not yet a stable and safe way to overcome. One of the greatest challenges that people are faced has to do with their concern on their privacy and on the safeguard of their sensitive information that is stored in any device that one uses. In fact, one of the most used technology is the Mobile, which can take several forms, features, shapes, and many other components. In line manner, cybercrime is growing rapidly, targeting the exploitation and retrieval of information from these gadgets. Even so, with a Mobile, comes several challenges including a rapidly dynamic change in its landscape, an everincreasing diversity of mobile phones forms, integration of the information on a Mobile into the Cloud and IoT. As such, it’s vital to have a stable and safe toolbox that will enable a digital investigator to potentially prevent, detect and solve any issue that may be related to Mobile Device Forensics while solving out various investigations, being it criminal, civil, corporate or any other

    Program Analysis Based Approaches to Ensure Security and Safety of Emerging Software Platforms

    Full text link
    Our smartphones, homes, hospitals, and automobiles are being enhanced with software that provide an unprecedentedly rich set of functionalities, which has created an enormous market for the development of software that run on almost every personal computing devices in a person's daily life, including security- and safety-critical ones. However, the software development support provided by the emerging platforms also raises security risks by allowing untrusted third-party code, which can potentially be buggy, vulnerable or even malicious to control user's device. Moreover, as the Internet-of-Things (IoT) technology is gaining vast adoptions by a wide range of industries, and is penetrating every aspects of people's life, safety risks brought by the open software development support of the emerging IoT platform (e.g., smart home) could bring more severe threat to the well-being of customers than what security vulnerabilities in mobile apps have done to a cell phone user. To address this challenge posed on the software security in emerging domains, my dissertation focuses on the flaws, vulnerabilities and malice in the software developed for platforms in these domains. Specifically, we demonstrate that systematic program analyses of software (1) Lead to an understanding of design and implementation flaws across different platforms that can be leveraged in miscellaneous attacks or causing safety problems; (2) Lead to the development of security mechanisms that limit the potential for these threats.We contribute static and dynamic program analysis techniques for three modern platforms in emerging domains -- smartphone, smart home, and autonomous vehicle. Our app analysis reveals various different vulnerabilities and design flaws on these platforms, and we propose (1) static analysis tool OPAnalyzer to automates the discovery of problems by searching for vulnerable code patterns; (2) dynamic testing tool AutoFuzzer to efficiently produce and capture domain specific issues that are previously undefined; and (3) propose new access control mechanism ContexIoT to strengthen the platform's immunity to the vulnerability and malice in third-party software. Concretely, we first study a vulnerability family caused by the open ports on mobile devices, which allows remote exploitation due to insufficient protection. We devise a tool called OPAnalyzer to perform the first systematic study of open port usage and their security implications on mobile platform, which effectively identify and characterize vulnerable open port usage at scale in popular Android apps. We further identify the lack of context-based access control as a main enabler for such attacks, and begin to seek for defense solution to strengthen the system security. We study the popular smart home platform, and find the existing access control mechanisms to be coarse-grand, insufficient, and undemanding. Taking lessons from previous permission systems, we propose the ContexIoT approach, a context-based permission system for IoT platform that supports third-party app development, which protects the user from vulnerability and malice in these apps through fine-grained identification of context. Finally, we design dynamic fuzzing tool, AutoFuzzer for the testing of self-driving functionalities, which demand very high code quality using improved testing practice combining the state-of-the-art fuzzing techniques with vehicular domain knowledge, and discover problems that lead to crashes in safety-critical software on emerging autonomous vehicle platform.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145845/1/jackjia_1.pd

    Fog computing for sustainable smart cities: a survey

    Get PDF
    The Internet of Things (IoT) aims to connect billions of smart objects to the Internet, which can bring a promising future to smart cities. These objects are expected to generate large amounts of data and send the data to the cloud for further processing, specially for knowledge discovery, in order that appropriate actions can be taken. However, in reality sensing all possible data items captured by a smart object and then sending the complete captured data to the cloud is less useful. Further, such an approach would also lead to resource wastage (e.g. network, storage, etc.). The Fog (Edge) computing paradigm has been proposed to counterpart the weakness by pushing processes of knowledge discovery using data analytics to the edges. However, edge devices have limited computational capabilities. Due to inherited strengths and weaknesses, neither Cloud computing nor Fog computing paradigm addresses these challenges alone. Therefore, both paradigms need to work together in order to build an sustainable IoT infrastructure for smart cities. In this paper, we review existing approaches that have been proposed to tackle the challenges in the Fog computing domain. Specifically, we describe several inspiring use case scenarios of Fog computing, identify ten key characteristics and common features of Fog computing, and compare more than 30 existing research efforts in this domain. Based on our review, we further identify several major functionalities that ideal Fog computing platforms should support and a number of open challenges towards implementing them, so as to shed light on future research directions on realizing Fog computing for building sustainable smart cities

    Elastic phone : towards detecting and mitigating computation and energy inefficiencies in mobile apps

    Get PDF
    Mobile devices have become ubiquitous and their ever evolving capabilities are bringing them closer to personal computers. Nonetheless, due to their mobility and small size factor constraints, they still present many hardware and software challenges. Their limited battery life time has led to the design of mobile networks that are inherently different from previous networks (e.g., wifi) and more restrictive task scheduling. Additionally, mobile device ecosystems are more susceptible to the heterogeneity of hardware and from conflicting interests of distributors, internet service providers, manufacturers, developers, etc. The high number of stakeholders ultimately responsible for the performance of a device, results in an inconsistent behavior and makes it very challenging to build a solution that improves resource usage in most cases. The focus of this thesis is on the study and development of techniques to detect and mitigate computation and energy inefficiencies in mobile apps. It follows a bottom-up approach, starting from the challenges behind detecting inefficient execution scheduling by looking only at apps’ implementations. It shows that scheduling APIs are largely misused and have a great impact on devices wake up frequency and on the efficiency of existing energy saving techniques (e.g., batching scheduled executions). Then it addresses many challenges of app testing in the dynamic analysis field. More specifically, how to scale mobile app testing with realistic user input and how to analyze closed source apps’ code at runtime, showing that introducing humans in the app testing loop improves the coverage of app’s code and generated network volume. Finally, using the combined knowledge of static and dynamic analysis, it focuses on the challenges of identifying the resource hungry sections of apps and how to improve their execution via offloading. There is a special focus on performing non-intrusive offloading transparent to existing apps and on in-network computation offloading and distribution. It shows that, even without a custom OS or app modifications, in-network offloading is still possible, greatly improving execution times, energy consumption and reducing both end-user experienced latency and request drop rates. It concludes with a real app measurement study, showing that a good portion of the most popular apps’ code can indeed be offloaded and proposes future directions for the app testing and computation offloading fields.Los dispositivos móviles se han tornado omnipresentes y sus capacidades están en constante evolución acercándolos a los computadoras personales. Sin embargo, debido a su movilidad y tamaño reducido, todavía presentan muchos desafíos de hardware y software. Su duración limitada de batería ha llevado al diseño de redes móviles que son inherentemente diferentes de las redes anteriores y una programación de tareas más restrictiva. Además, los ecosistemas de dispositivos móviles son más susceptibles a la heterogeneidad de hardware y los intereses conflictivos de las entidades responsables por el rendimiento final de un dispositivo. El objetivo de esta tesis es el estudio y desarrollo de técnicas para detectar y mitigar las ineficiencias de computación y energéticas en las aplicaciones móviles. Empieza con los desafíos detrás de la detección de planificación de ejecución ineficientes, mirando sólo la implementación de las aplicaciones. Se muestra que las API de planificación son en gran medida mal utilizadas y tienen un gran impacto en la frecuencia con que los dispositivos despiertan y en la eficiencia de las técnicas de ahorro de energía existentes. A continuación, aborda muchos desafíos de las pruebas de aplicaciones en el campo de análisis dinámica. Más específicamente, cómo escalar las pruebas de aplicaciones móviles con una interacción realista y cómo analizar código de aplicaciones de código cerrado durante la ejecución, mostrando que la introducción de humanos en el bucle de prueba de aplicaciones mejora la cobertura del código y el volumen de comunicación de red generado. Por último, combinando la análisis estática y dinámica, se centra en los desafíos de identificar las secciones de aplicaciones con uso intensivo de recursos y cómo mejorar su ejecución a través de la ejecución remota (i.e.,"offload"). Hay un enfoque especial en el "offload" no intrusivo y transparente a las aplicaciones existentes y en el "offload"y distribución de computación dentro de la red. Demuestra que, incluso sin un sistema operativo personalizado o modificaciones en la aplicación, el "offload" en red sigue siendo posible, mejorando los tiempos de ejecución, el consumo de energía y reduciendo la latencia del usuario final y las tasas de caída de solicitudes de "offload". Concluye con un estudio real de las aplicaciones más populares, mostrando que una buena parte de su código puede de hecho ser ejecutado remotamente y propone direcciones futuras para los campos de "offload" de aplicaciones

    Vulnerability assessment of modern ICT infrastructure from an information warfare perspective.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2011.The overall objective of the study is to provide a vulnerability assessment of the mobile communications infrastructure to information warfare attacks; this study has a South African focus. The mobile infrastructure was selected as the infrastructure and mobile devices incorporate the majority of modern ICT technologies, namely social networking, wireless connectivity and mobility, mass storage, as well as the telecommunications elements. The objectives of the study are to: Propose a new information warfare model, and from this deduce a vulnerability assessment framework from the specific information warfare perspective. These are the guiding frameworks and model for the study. Gather information regarding threats and vulnerabilities, with particular focus on potential use in information warfare and relevance to South Africa. Establish the criticality of the mobile infrastructure in South Africa. Use the gathered information in the vulnerability assessment, to assess the vulnerability of the mobile infrastructure and related devices and services. The model and framework are generated through desk-based research. The information is gathered from research protocols that are relevant to both research and risk and vulnerability assessment, these include: expert input through interviews and a research workshop, incident and trend analyses through news and vendor reports and academic publishing, computer simulation, questionnaire survey, and mathematical analyses. The information is then triangulated by using it in the vulnerability assessment. The primary and secondary data shows that attacks on confidentiality are the most prevalent for both computer-based networks and the mobile infrastructure. An increase in threats and incidents for both computer and mobile platforms is being seen. The information security trends in South Africa indicate that the existing security concerns are likely to worsen, in particular the high infection rates. The research indicates that the mobile infrastructure is critical in South Africa. The study validates the proposed framework, which indicates that South Africa is vulnerable to an information warfare attack in general. Key aspects of vulnerability in the mobile infrastructure are highlighted; the apparent high load of the mobile infrastructure in South Africa can be seen as a high risk vulnerability. Suggestions to mitigate vulnerabilities and threats are provided
    corecore