87,499 research outputs found

    The Combination of Paradoxical, Uncertain, and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference

    Full text link
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this chapter, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm hybrid rule of combination of masses.Comment: 20 page

    An introduction to DSmT

    Get PDF
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new approach

    Use of fuzzy risk assessment in FMEA of offshore engineering systems

    Get PDF
    This paper proposes a novel framework for analysing and synthesising engineering system risks on the basis of a generic Fuzzy Evidential Reasoning (FER) approach. The approach is developed to simplify the inference process and overcome the problems of traditional fuzzy rule based methods in risk analysis and decision making. The framework, together with the FER approach has been applied to model the safety of an offshore engineering system. The benchmarking between the new model and a well-established Rule based Inference Methodology using the Evidential Reasoning (RIMER) is conducted to demonstrate its reliability and unique characteristics. It will facilitate subjective risk assessment in different engineering systems where historical failure data is not available in their safety practice
    • …
    corecore