12,450 research outputs found

    Design of two-channel PR FIR filter banks with low system delay

    Get PDF
    IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 28-31 May 2000In this paper, a new approach for designing two-channel PR FIR filter banks with low system delay is proposed. It is based on the generalization of the structure previously proposed by Phoong et al. Such structurally PR filter banks are parameterized by two functions α(z) and β(z) which can be chosen as linear-phase FIR or allpass functions to construct FIR/IIR filter banks with good frequency characteristics. In this paper, the more general case of using different nonlinear-phase FIR functions for β(z) and α(z) is studied. As the linear-phase requirement is relaxed, higher stopband attenuation can still be achieved at low system delay. The design of the proposed low-delay filter banks is formulated as a complex polynomial approximation problem, which can be solved by the Remez exchange algorithm or analytic formula with very low complexity. The usefulness of the proposed algorithm is demonstrated by several design examples.published_or_final_versio

    Multi-plet two-channel perfect reconstruction filter banks

    Get PDF
    This paper proposes a new class of two-channel structural perfect reconstruction (PR) FIR filter banks (FBs) called the multi-plet FB. It generalizes structural PR FBs proposed by Phoong et al. and triplet FBs by employing multiple lifting steps similar to the conventional lifting structure. Apart from the important structural PR property, the multi-plet FB can be systematically designed to meet a given specification on the passband/stopband ripples and transition bandwidth. A low order prototype PR FB with a much wider transition band is first designed in order to obtain prescribed passband and stopband ripples. A subfilter is then designed so that the prototype FB can be wrapped by means of frequency transformation to meet the desired transition bandwidth, while preserving the PR condition, passband/stopband ripples and lifting structure. The design procedure is very general and it can be applied to both linearphase and low-delay multi-plet FBs. Design examples show that the proposed approach is more flexible in controlling the frequency characteristics of the PR FBs and has a lower design complexity than conventional methods. © 2005 IEEE.published_or_final_versio

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Generic Feasibility of Perfect Reconstruction with Short FIR Filters in Multi-channel Systems

    Full text link
    We study the feasibility of short finite impulse response (FIR) synthesis for perfect reconstruction (PR) in generic FIR filter banks. Among all PR synthesis banks, we focus on the one with the minimum filter length. For filter banks with oversampling factors of at least two, we provide prescriptions for the shortest filter length of the synthesis bank that would guarantee PR almost surely. The prescribed length is as short or shorter than the analysis filters and has an approximate inverse relationship with the oversampling factor. Our results are in form of necessary and sufficient statements that hold generically, hence only fail for elaborately-designed nongeneric examples. We provide extensive numerical verification of the theoretical results and demonstrate that the gap between the derived filter length prescriptions and the true minimum is small. The results have potential applications in synthesis FB design problems, where the analysis bank is given, and for analysis of fundamental limitations in blind signals reconstruction from data collected by unknown subsampled multi-channel systems.Comment: Manuscript submitted to IEEE Transactions on Signal Processin

    Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices

    Get PDF
    A technique is developed for the design of analysis filters in an M-channel maximally decimated, perfect reconstruction, finite-impulse-response quadrature mirror filter (FIR QMF) bank that has a lossless polyphase-component matrix E(z). The aim is to optimize the parameters characterizing E(z) until the sum of the stopband energies of the analysis filters is minimized. There are four novel elements in the procedure reported here. The first is a technique for efficient initialization of one of the M analysis filters, as a spectral factor of an Mth band filter. The factorization itself is done in an efficient manner using the eigenfilters approach, without the need for root-finding techniques. The second element is the initialization of the internal parameters which characterize E(z), based on the above spectral factor. The third element is a modified characterization, mostly free from rotation angles, of the FIR E(z). The fourth is the incorporation of symmetry among the analysis filters, so as to minimize the number of unknown parameters being optimized. The resulting design procedure always gives better filter responses than earlier ones (for a given filter length) and converges much faste

    Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks

    Get PDF
    A lattice structure and an algorithm are presented for the design of two-channel QMF (quadrature mirror filter) banks, satisfying a sufficient condition for perfect reconstruction. The structure inherently has the perfect-reconstruction property, while the algorithm ensures a good stopband attenuation for each of the analysis filters. Implementations of such lattice structures are robust in the sense that the perfect-reconstruction property is preserved in spite of coefficient quantization. The lattice structure has the hierarchical property that a higher order perfect-reconstruction QMF bank can be obtained from a lower order perfect-reconstruction QMF bank, simply by adding more lattice sections. Several numerical examples are provided in the form of design tables

    Theory and design of uniform DFT, parallel, quadrature mirror filter banks

    Get PDF
    In this paper, the theory of uniform DFT, parallel, quadrature mirror filter (QMF) banks is developed. The QMF equations, i.e., equations that need to be satisfied for exact reconstruction of the input signal, are derived. The concept of decimated filters is introduced, and structures for both analysis and synthesis banks are derived using this concept. The QMF equations, as well as closed-form expressions for the synthesis filters needed for exact reconstruction of the input signalx(n), are also derived using this concept. In general, the reconstructed. signalhat{x}(n)suffers from three errors: aliasing, amplitude distortion, and phase distortion. Conditions for exact reconstruction (i.e., all three distortions are zero, andhat{x}(n)is equal to a delayed version ofx(n))of the input signal are derived in terms of the decimated filters. Aliasing distortion can always be completely canceled. Once aliasing is canceled, it is possible to completely eliminate amplitude distortion (if suitable IIR filters are employed) and completely eliminate phase distortion (if suitable FIR filters are employed). However, complete elimination of all three errors is possible only with some simple, pathalogical stable filter transfer functions. In general, once aliasing is canceled, the other distortions can be minimized rather than completely eliminated. Algorithms for this are presented. The properties of FIR filter banks are then investigated. Several aspects of IIR filter banks are also studied using the same framework
    corecore