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MULTI-PLET TWO-CHANNEL PERFECT RECONSTRUCTION FILTER BANKS 
S. C. Chan and K. M. Tsui 

Department of Electrical and Electronic Engineering, 
The University of Hong Kong, Pokfulam Road, Hong Kong. 

ABSTRACT 
This paper proposes a new class of two-channel structural 

perfect reconstruction (PR) FIR filter banks (FBs) called the 
multi-plet FB. It generalizes structural PR FBs proposed by 
Phoong et al. and triplet FBs by employing multiple lifting steps 
similar to the conventional lifting structure. Apart from the 
important structural PR property, the multi-plet FB can be 
systematically designed to meet a given specification on the 
passband/stopband ripples and transition bandwidth. A low order 
prototype PR FB with a much wider transition band is first 
designed in order to obtain prescribed passband and stopband 
ripples. A subfilter is then designed so that the prototype FB can 
be wrapped by means of frequency transformation to meet the 
desired transition bandwidth, while preserving the PR condition, 
passband/stopband ripples and lifting structure. The design 
procedure is very general and it can be applied to both linear-
phase and low-delay multi-plet FBs. Design examples show that 
the proposed approach is more flexible in controlling the 
frequency characteristics of the PR FBs and has a lower design 
complexity than conventional methods. 

I.   INTRODUCTION 
PR FBs have important applications in signal analysis, 

coding and the design of wavelet bases. An efficient structure of 
two-channel FIR/IIR FBs, which structurally satisfies the PR 
condition, is the structural PR FB proposed by Phoong et al. [1]. 
One limitation of this structure is that the magnitudes of the 
lowpass and highpass analysis filters at ω = π /2 in the linear-
phase case are respectively restricted to 0.5 and 1, or vice versa. 
In another structural PR FBs called triplet FBs [2], a 
generalization of the structure in [1], more symmetric frequency 
responses can be obtained by properly choosing the parameters 
in the structure. The triplet FBs are parameterized by three 
subfilters and three delay parameters. To meet different design 
specifications, these subfilters can be chosen as arbitrary 
functions such as linear-phase FIR [2], [4] and low-delay FIR [5] 
functions. Because of this property, the design of PR FBs can be 
simplified to general filter design problems.  

The flexibility and effectiveness of these structural PR FBs 
motivate us to study further a new class of two-channel structural 
PR FBs with multiple lifting steps called the multi-plet FBs. It 
extends the structural PR FBs [1] and the triplet FBs [2], which 
involve two and three lifting steps, respectively. It is shown later 
in this paper that the design of the proposed multi-plet FB is 
closely related to the concept of frequency transformation of 
digital filters studied in [6] and [7].  As a result, the frequency 
characteristics of the multi-plet PR FB can be varied by varying 
on-line the subfilter as variable digital filter [8]. More precisely, 
if a two-channel PR FB is expressed in certain ladder or lifting 
structure [3] having the same subfilter of the form (1 + z-1) / 2 in 
all the lifting steps, then appropriate frequency transformation, 
similar to the approaches in [6] and [7], can be applied directly to 
the lifting structure to obtain another PR FB with the same 
number of lifting steps, the same passband and stopband ripples, 
but an arbitrary sharp transition bandwidth. Thus, the design of 
the multi-plet FB can be divided into two sub-problems: (i) the 
design of a prototype PR FB to meet certain specifications on the 
passband and stopband ripples and (ii) the design of a subfilter 
which determines the cutoff frequency of the final multi-plet FB 
after transformation. Like the structural PR and triplet FBs, the 
PR condition is preserved under coefficient quantization. 

Another important advantage is that a systematic design 
procedure and design formulae are available to meet a given 
specification on the passband and stopband ripples and transition 
bandwidth of the final PR FB. The proposed design approach is 
also applicable to the design of low-delay multi-plet FBs, where 
low-delay FIR subfilters are used instead of linear-phase FIR 
subfilters for reducing the system delay. This gives rise to a new 
class of low-delay multiplet PR FB, which is a generalization of 
those in [9] and [5] with two and three lifting steps, respectively. 
Design results show that the proposed low-delay multi-plet FB 
offers a comparable performance as, but considerably lower 
system delay than, their linear-phase counterparts. The design of 
the linear-phase and low-delay subfilters can be solved using 
second order cone programming (SOCP) [10]. The main 
advantage of using SOCP is that the problem is convex and the 
global optimal solution, if it exists, is guaranteed. Furthermore, 
using the SOCP formulation, it is possible to impose prescribed 
K-regularity constraints on the multi-plet FBs in order to obtain 
muti-plet-based wavelet bases. The required K-regularity 
condition is a set of linear equality constraints on the subfilter. 
Due to page limitation, the problem of imposing K-regularity 
condition will be reported elsewhere. 

It should be noted that there was previous work on the 
design of two-channel PR FBs using frequency transformation 
[11]. The present work differs from [11] in that the 
transformation is applied directly to the lifting structure, which 
leads naturally to efficient implementation, and the PR condition 
is unaffected by coefficient quantization. In addition, thanks to 
the frequency transformation concept in [6], [7], it is possible to 
derive systematic procedure and design formulae to meet the 
given specifications of passband and stopband ripples and 
transition bandwidth. On the other hand, these relations between 
the prototype FB and the transformed FB were not explored in 
[11] so that the frequency characteristics of the latter cannot be 
precisely controlled.  Finally, only linear-phase PR FBs, but not 
low-delay PR FBs, were studied in [11]. The paper is organized 
as follows: the proposed multi-plet FBs and the concept of 
frequency transformation are introduced in section II. Several 
design examples are given in section III, and finally, conclusion 
is drawn in section IV. 

II.   MULTI-PLET TWO-CHANNEL PR FIR FBS 
A. — Lifting Structure 

The general structure of the multi-plet two-channel FBs is 
shown in figure 1. It is parameterized by L subfilters )(zQl , L 
delay parameters lN , L lifting coefficients lp , and two scaling 
constants C0 and C1 for l = 0,1,…,L – 1. It can be seen from 
figure 1 that the z-transform of the intermediate filter )()( zH l  
after the l-th lifting step can be written as the following recursion: 

)()( 2
00

12)0( 0 zQpzzH N ⋅+= −− ,  

)()()( )0(2
11

2)1( 1 zHzQpzzH N ⋅+= − ,  

)()()()( )1(2)2(2)( zHzQpzHzzH l
ll

lNl l −−− ⋅+= , 
for 1,,3,2 −= Ll K . (1) 

Hence, the z-transforms of the resultant analysis and synthesis 
filters in the lifting structure can be written as follows: 

)()( )2(
00 zHCzH L−= , )()( )1(

11 zHCzH L−= ,  
)()( 10 zHzF −=  and )()( 01 zHzF −−= . (2) 
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We shall consider a special case of lifting with identical 
subfilters: 

)()()()()( 22
0

2
1

2
2

2
1 zQzQzQzQzQ LL ===== −− L , (3) 

The delay parameters Nl are then given by: 
GNNNL ====− 121 L  and 2/)1(0 −= GN , (4) 

where G is the passband group delay of Q(z2). As a result, the 
group delays of the analysis filter pair, H0(z) and H1(z), are 
respectively given by: 

GLG ⋅−= )1(0  and GLG ⋅=1 . (5) 

B. — Transformation of Lifting Structure 
If the lifting coefficients are properly chosen, the multi-plet 

FB is structurally PR with desirable frequency characteristics for 
arbitrary choice of the subfilters which can be chosen as linear-
phase/low-delay FIR or IIR filters. However, the determination 
of these coefficients is a non-trivial task since the lifting 
factorization using Euclidean factorization [3] is in general non-
unique and there are many possible choices of these coefficients. 
To overcome this problem, a prototype PR FB with type 1 FIR 
linear-phase analysis filters (i.e. filters with odd length and 
symmetric impulse response) is employed so that it can be 
factored uniquely into a ladder or lifting structure having the 
same subfilter of the form 2/)1()(

~
)( 1−+== zzQzQ  in all the 

lifting steps [12]. It then follows that the zero-phase responses of 
)(~ )( zH l , denoted by )(~ )( xR l , for 1,,1,0 −= Ll K  are given by: 

xpzHzxR 0
)0()0( 1)(~)(~

+=⋅= ,  

)(~1)(~)(~ )0(
1

)1(2)1( xRxpzHzxR ⋅+=⋅= ,  

)(~)(~)(~)(~ )1()2()(1)( xRxpzRzHzxR l
l

llll −−+ ⋅+=⋅= ,
for 1,,3,2 −= Ll K . (6) 

where 2/)()(
~ 12 −+=⋅= zzzQzx . In general, the zero-phase 

responses of the analysis filters can be expressed as follows: 





 += ∑

−

=

1

1
000 )(1)(~ L

n

nxnaCxR  and 



 += ∑

=

L

n

nxnaCxR
1

111 )(1)(~ .

 (7) 
For convenience, the corresponding causal FB considered in (7) 
is referred to as the prototype FB. We can see that the lengths of 
the analysis filters are odd, and differed by two. With the 
following substitution of variable: 

)()ˆ( 2zQzxRx G
Q == , (8) 

where )ˆ(xRQ  is the zero-phase response of the subfilter )( 2zQ  
with certain integer G, we obtain from (7) the zero-phase 
response of a new analysis filter pair as follows: 

})]ˆ()[(1{)ˆ( 1
1 000 ∑ −
=+= L

n
n

Q xRnaCxR  and  

})]ˆ()[(1{)ˆ( 1 111 ∑ =+= L
n

n
Q xRnaCxR . (9) 

We call the corresponding casual FB the transformed FB of the 
prototype. Since the transformed FB is obtained by replacing x  
in each lifting step of figure 1 by )ˆ(xRQ , it can also be 
implemented by the same number of lifting steps as the prototype. 

To analyze the effect of the transformation, let us express the 
z-variable as ω~je , where  ω~  is the digital radian frequency of 
the prototype FB.  From (8), the digital frequencies before and 
after transformation are related by: 

))(cos()ˆ()~cos( ωω QQ RxRx === ,  

where ωcosˆ =x  and ω  is the digital radian frequency of the 
transformed FB. Figure 2 shows graphically the relationship of 
the various quantities in the transformation. It can be seen that x 
varies monotonically from -1 to 1 as ω~  varies from π−  to π , 
and the transition band of the prototype FB lies in the interval 
around 2/~ πω =  or x = 0. Therefore, if )ˆ(xRQ  is appropriately 

designed to have a sharper characteristics than ωcosˆ =x  around 
2/πω = , then the transformed FB will have a much narrower 

transition band. Furthermore, if we want to preserve the 
passband and stopband ripples of the prototype FB in the 
transformed FB, )ˆ(xRQ  should map respectively the values of 

ω~cos=x  in the passband and stopband of the prototype FB to 
the new passband and stopband of the transformed FB.  

Using these results, the design of a two-channel PR FB can 
be splitted into two much simpler sub-problems, namely the 
designs of the prototype PR FB and the subfilter )ˆ(xRQ . The 
advantage of this approach is that the length of the prototype FB, 
which is targeted to have rather wide transition bandwidth, are 
relatively short. Therefore, the number of variables, and hence 
the design complexity of the prototype FB can be greatly reduced, 
as compared to the direct design of the target FB using nonlinear 
constrained optimization with large number of variables in order 
to satisfy the specifications. On the other hand, the transformed 
FB can achieve a much narrower and prescribed transition 
bandwidth by properly designing the subfilter using conventional 
filter design technique, while preserving the passband/stopband 
ripples of the prototype FB. Next, we shall determine the 
specifications of the prototype FB and the subfilters. 
C. — Design Specifications and methodology 

Obviously, the target specifications are identical to those of 
the transformed FB. Suppose that the specifications of the latter 
are as follows: 
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where ωc specifies the cutoff frequency; δpi and δsi are 
respectively the passband and stopband ripples of the analysis 
filters )(zH i  and hence )ˆ(xRi , for 1,0=i . As mentioned 
earlier, the target specification can be met by first designing a 
prototype FB with the given passband and stopband ripples but 
with a wider transition band. After appropriate frequency 
transformation in (8), the given transition bandwidth can be 
achieved, while preserving the lifting structure, PR property, and 
passband/stopband ripples. Therefore, the specifications of the 
prototype FB can be expressed as follows: 
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where cω~  is the cutoff frequency of the prototype FB. On the 
other hand, it can be seen from Figure 2 that to transform the 
ripples of the prototype FB at the ω~ -domain to the frequency of 
interest at the ω -domain, the subfilter should satisfy: 







−≤≤−

≤≤

),~cos()ˆ(1

,1)ˆ()~cos(

cQ

Qc

xR

xR

ω

ω

πωωπ
ωω

≤≤−
≤≤

c

c0
. (12) 

If the prototype FB is monotonic decreasing at the stopband, say 
a maximally-flat function in [11], then by choosing an 
appropriate subfilter, an arbitrary small stopband attenuation can 
be achieved after transformation. The basic idea is similar to the 
design procedures of the structural PR FB in [1,8] and the triplet 
FB in [2,4,5], except that the prototype FBs in these FBs are 
fixed and have simple coefficients. In addition, since the design 
of these FBs is not viewed as a transformation, each subfilter is 
usually designed independently.  Alternatively, a set of prototype 
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PR FBs with different passband/ stopband ripples can be 
designed offline. The subfilter can then be designed so that the 
transformed FB will be able to achieve a narrower transition 
bandwidth, while preserving the ripples of the prototype FB. 
Optimized prototype FBs usually lead to a better performance.   
D. — Design of Subfilters 

Although our discussion so far focuses on linear-phase FIR 
subfilters, the proposed transformation method also works well 
for approximately linear-phase FIR subfilters. The advantage of 
using low-delay subfilters over their linear-phase counterparts is 
that the overall system delay of the transformed FBs can be 
reduced. To begin with, denote the transfer function of the FIR 
subfilter to be designed by: 
 ∑ −

=
−= 1

0 )()( QL
n

nznqzQ , (13) 
where LQ and q(n) are respectively the length and the impulse 
response of the subfilter. By introducing a delay term e-jωG into 
(12), the desired response of the subfilter can be rewritten as 
follows: 
 2/)( Gj

d emQ ωω −⋅= , cωω 20 ≤≤ , (14) 
where 2/)]~cos(1[ cm ω+= . From (13) and (14), we also have: 
 DLG Q −−= 1 , (15) 
where D is a prescribed delay parameter. When D = 0, the 
subfilter is an even-length linear-phase FIR filter with symmetric 
impulse response. Consequently, G has to be an odd positive 
integer. Moreover, it was found that the subfilter length LQ is 
approximately given by: 
 

)2(5404.4
1749.5)(log20 10

c

Q
QL

ωπ
δ

−⋅

−−
≈ , (16) 

where 2/)]~cos(1[ cQ ωδ −= . This provides a good starting point 
to determine LQ to meet a given specification as shown in (12). 
For the low-delay case, LQ can be chosen as either odd or even 
integer, provided that G is an odd integer, and D is a positive 
integer corresponding to the amount of delay reduction. From 
(16), the estimated value of LQ is increased until the required 
specification is met, since slightly longer subfilter length is 
usually required as compared to its linear-phase counterpart for 
the same specification. With a given subfilter length, the design 
problem is to approximate the desired response Qd(ω) by Q(ejω) 
in the minimax sense by minimizing: 
 )()( max ωω

ω d
j QeQE −=∞ , ]2,0[ cωω∈ . (17) 

The minimization problem can be solved readily using SOCP [9]. 
Due to page limitation, interested readers are referred to [13] for 
more details.  

III.   DESIGN EXAMPLES 
Example 1: PR Linear-Phase Multi-plet FBs 

In this example, two-channel linear-phase FIR multi-plet FB 
with the following specifications is designed using the proposed 
approach: cutoff frequency ωc = 0.4π, passband ripples δp0 =  δp1 
= 3.45394×10-5 (i.e. 3×10-4 dB passband deviation) and stopband 
ripples  δs0 =  δs1 = 0.00316 (i.e. -50 dB stopband attenuation). 
For these specifications, a low order prototype FB with L = 4 
lifting steps is first designed and the corresponding frequency 
response is shown in figure 3a. The corresponding lifting 
coefficients and scaling constants are listed in the second column 
of table 1. From figure 3a, it can be seen that cω~  should be 
chosen as π04.0  so as to satisfy the prescribed passband and 
stopband ripples. In order for the subfilter to satisfy (12), its filter 
length is chosen to be 16 according to (16). The frequency 
response of the transformed FB is shown in figure 3b. The 
specifications of the subfilter and the design results in this 
example are summarized in tables 2 and 3, respectively. To 
illustrate the flexibility of the proposed transformation method, 

figures 3c and 3d show the frequency responses of the subfilters 
with different cutoff frequencies and the corresponding 
transformed multi-plet FBs. It can be seen that the passband and 
stopband are equiripple and the frequency response is very 
symmetry. Furthermore, by realizing the subfilter as variable 
digital filters [8], the cutoff frequencies can be varied online. For 
comparison purpose, we also consider the design of the triplet 
FB proposed in [5]. The general design procedure of the triplet 
FB requires three separate designs of the subfilters and their 
lengths have to be chosen properly so as to satisfy different 
specifications. By a number of trials and errors, we found that 
the lengths of these three subfilters have to be 22 so as to satisfy 
the same specifications above with the minimum arithmetic 
complexity. A similar result can also be obtained by designing a 
single subfilter of length 22 using the proposed approach and the 
prototype FB in the triple structure as shown in table 1. The 
design results are omitted due to page limitation. This triplet FB 
has a comparable arithmetic complexity and performance as the 
aforementioned multi-plet FB. On the other hand, since there is 
no systematic design procedure for determining the subfilter 
lengths, one would have to try every combination of the subfilter 
lengths in order to meet the specification. This is rather time 
consuming and makes the design inefficient. For the proposed 
approach, the frequency response of the prototype PR FB, such 
as the passband and stopband ripples, can be controlled through 
optimization with few variables. Identical subfilters can then be 
designed separately to meet the specification.  
Example 2: PR Low-Delay Multi-plet FBs 

This example illustrates the flexibility of the proposed 
approach in designing low-delay multi-plet PR FB. The 
specifications are: 5×10-4 dB passband deviation, -50 dB 
stopband attenuation, ωc = 0.45π and D = 10. From (5), the group 
delays of the desired analysis lowpass and highpass filters are 
significantly reduced to 63 and 84 samples, as compared to 93 
and 124 samples for the linear-phase case with D = 0. It was 
found that a subfilter with πω 04.0~ =c  and 32=QL  is able to 
meet the required specifications. The third column of table 2 
summarizes the parameters of the subfilter. The frequency and 
group delay responses of the transformed multi-plet FB are 
respectively shown in figures 4a and 4b.  It can be seen that the 
low-delay multi-plet FB is approximately linear-phase in the 
passband with peak group delay errors of 0.0083 samples for 
H0(z), and 0.0086 samples for H1(z). Figures 4c and 4d show the 
analysis scaling and wavelet functions. They are rather smooth, 
but not symmetric due to the low-delay constraint. The 
performances of the transformed FB are summarized in table 3. 

IV.   CONCLUSION 
A new class of two-channel structural PR FIR FBs called 

multi-plet FBs is presented. It generalizes structural PR FBs and 
triplet FBs by employing multiple lifting steps in the 
conventional lifting structure. The design of the multi-plet FBs 
can be done in two separate steps: (i) a low order prototype PR 
FB with much wider transition band is first designed to satisfy 
prescribed passband/stopband ripples, and (ii) the prototype FB 
is then wrapped by means of frequency transformation through 
an appropriate subfilter to meet the desired transition bandwidth, 
while preserving the PR condition, passband/stopband ripples 
and lifting structure.. The use of low-delay subfilters is also 
proposed to further reduce the system delay of the multi-plet FBs 
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 Prototype FB Triplet FB [4,5] 

p0 0.23987556667257 1 – 2   
p1 -0.54571527976115 1 / 2  
p2 0.54045911345798 1 – 2  
p3 -0.23167459250035 N/A 
C0 0.71237102180672 1 / 2  
C1 0.71401331291255 1 / 2  

Table 1. Lifting coefficients and scaling constants of the prototype FBs. 

 Ex. 1 Ex. 2 
LQ 16 32 
D 0 10 
ωc 0.4π 0.45π 

cω~  π04.0  π04.0  

Table 2. Specifications of the subfilters in examples 1 and 2. 

 Ex. 1 Ex. 2 
Group Delays of H0(z), H1(z)  45, 60 63, 84 
Passband deviation of H0(z) /10-3dB 0.2950 0.3503 
Stopband attenuation of H0(z) /dB 53.0565 51.3018 
Group delay error of H0(z) /samples 0 0.0083 
Passband deviation of H1(z) /10-3dB 0.2965 0.3530 
Stopband attenuation of H1(z) /dB 53.0219 51.4734 
Group delay error of H1(z) /samples 0 0.0086 

Table 3. Design results of the transformed FBs in examples 1 and 2. 
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Figure 1: Structure of the multi-plet FBs: (a) Analysis bank. (b) Synthesis bank.
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Figure 2: General relations and specifications of the prototype FB, the subfilter 
and the multi-plet transformed FB. 
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Figure 3. Design results of FIR linear-phase multi-plet FB in example 1: a) 
Frequency response of the prototype FB. b) Frequency response of the 
transformed FBs with ωc = 0.4π. c) and d) Magnitude responses of the subfilters 
and the corresponding frequency response of the transformed FBs with different 
cutoff frequencies (dotted line: ωc = 0.3π,  dash-dotted line: ωc = 0.36π and solid 
line: ωc = 0.45π). 
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Figure 4. Design results of FIR low-delay multi-plet FB in example 2: a) 
Frequency responses, b) group delay response, c) analysis scaling function and 
d) analysis wavelet function of the transformed FB with ωc = 0.45π and D = 10.
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