2 research outputs found

    A new approach to combine texture compression and filtering

    No full text
    Texture mapping has been widely used to improve the quality of 3D rendered images. To reduce the storage and bandwidth impact of texture mapping, compression systems are commonly used. To further increase the quality of the rendered images, texture filtering is also often adopted. These two techniques are generally considered to be independent. First, a decompression step is executed to gather texture samples, which is then followed by a separate filtering step. We have investigated a system based on linear transforms that merges both phases together. This allows more efficient decompression and filtering at higher compression ratios. This paper formally presents our approach for any linear transformation, how the commonly used discrete cosine transform can be adapted to this new approach, and how this method can be implemented in real time on current-generation graphics cards using shaders. Through reuse of the existing hardware filtering, fast magnification and minification filtering is achieved. Our implementation provides fully anisotropically filtered samples four to six times faster than an implementation using two separate phases for decompression and filtering. Additionally, our transform-based compression also provides increased and variable compression ratios over standard hardware compression systems at a comparable or better quality level

    A new approach to combine texture compression and filtering

    No full text
    Texture mapping has been widely used to improve the quality of 3D rendered images. To reduce the storage and bandwidth impact of texture mapping, compression systems are commonly used. To further increase the quality of the rendered images, texture filtering is also often adopted. These two techniques are generally considered to be independent. First, a decompression step is executed to gather texture samples, which is then followed by a separate filtering step. We have investigated a system based on linear transforms that merges both phases together. This allows more efficient decompression and filtering at higher compression ratios. This paper formally presents our approach for any linear transformation, how the commonly used discrete cosine transform can be adapted to this new approach, and how this method can be implemented in real time on current-generation graphics cards using shaders. Through reuse of the existing hardware filtering, fast magnification and minification filtering is achieved. Our implementation provides fully anisotropically filtered samples four to six times faster than an implementation using two separate phases for decompression and filtering. Additionally, our transform-based compression also provides increased and variable compression ratios over standard hardware compression systems at a comparable or better quality level
    corecore