3 research outputs found

    Cache-Friendly, Modular and Parallel Schemes For Computing Subresultant Chains

    Get PDF
    The RegularChains library in Maple offers a collection of commands for solving polynomial systems symbolically with taking advantage of the theory of regular chains. The primary goal of this thesis is algorithmic contributions, in particular, to high-performance computational schemes for subresultant chains and underlying routines to extend that of RegularChains in a C/C++ open-source library. Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a client procedure, not all polynomials of the chain, or not all coefficients of a given subresultant, may be needed. Based on that observation, we design so-called speculative and caching strategies which yield great performance improvements within our polynomial system solver. Our implementation of these techniques has been highly optimized. We have implemented optimized core arithmetic routines and multithreaded subresultant algorithms for univariate, bivariate and multivariate polynomials. We further examine memory access patterns and data locality for computing subresultants of multivariate polynomials, and study different optimization techniques for the fraction-free LU decomposition algorithm to compute subresultants based on determinant of Bezout matrices. Our code is publicly available at www.bpaslib.org as part of the Basic Polynomial Algebra Subprograms (BPAS) library that is mainly written in C, with concurrency support and user interfaces written in C++

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics
    corecore