543 research outputs found

    Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems

    Get PDF
    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    Multiple-antenna-aided OFDM employing genetic-algorithm-assisted minimum bit error rate multiuser detection

    No full text
    The family of minimum bit error rate (MBER) multiuser detectors (MUD) is capable of outperforming the classic minimum mean-squared error (MMSE) MUD in terms of the achievable bit-error rate (BER) owing to directly minimizing the BER cost function. In this paper,wewill invoke genetic algorithms (GAs) for finding the optimum weight vectors of the MBER MUD in the context of multiple-antenna-aided multiuser orthogonal frequency division multiplexing (OFDM) .We will also show that the MBER MUD is capable of supporting more users than the number of receiver antennas available, while outperforming the MMSE MUD

    Channel Estimation And Multiuser Detection In Asynchronous Satellite Communications

    Full text link
    In this paper, we propose a new method of channel estimation for asynchronous additive white Gaussian noise channels in satellite communications. This method is based on signals correlation and multiuser interference cancellation which adopts a successive structure. Propagation delays and signals amplitudes are jointly estimated in order to be used for data detection at the receiver. As, a multiuser detector, a single stage successive interference cancellation (SIC) architecture is analyzed and integrated to the channel estimation technique and the whole system is evaluated. The satellite access method adopted is the direct sequence code division multiple access (DS CDMA) one. To evaluate the channel estimation and the detection technique, we have simulated a satellite uplink with an asynchronous multiuser access.Comment: 14 pages, 9 figure
    corecore