1,908 research outputs found

    Capacity Bounds for the KK-User Gaussian Interference Channel

    Full text link
    The capacity region of the KK-user Gaussian interference channel (GIC) is a long-standing open problem and even capacity outer bounds are little known in general. A significant progress on degrees-of-freedom (DoF) analysis, a first-order capacity approximation, for the KK-user GIC has provided new important insights into the problem of interest in the high signal-to-noise ratio (SNR) limit. However, such capacity approximation has been observed to have some limitations in predicting the capacity at \emph{finite} SNR. In this work, we develop a new upper-bounding technique that utilizes a new type of genie signal and applies \emph{time sharing} to genie signals at KK receivers. Based on this technique, we derive new upper bounds on the sum capacity of the three-user GIC with constant, complex channel coefficients and then generalize to the KK-user case to better understand sum-rate behavior at finite SNR. We also provide closed-form expressions of our upper bounds on the capacity of the KK-user symmetric GIC easily computable for \emph{any} KK. From the perspectives of our results, some sum-rate behavior at finite SNR is in line with the insights given by the known DoF results, while some others are not. In particular, the well-known K/2K/2 DoF achievable for almost all constant real channel coefficients turns out to be not embodied as a substantial performance gain over a certain range of the cross-channel coefficient in the KK-user symmetric real case especially for \emph{large} KK. We further investigate the impact of phase offset between the direct-channel coefficient and the cross-channel coefficients on the sum-rate upper bound for the three-user \emph{complex} GIC. As a consequence, we aim to provide new findings that could not be predicted by the prior works on DoF of GICs.Comment: Presented in part at ISIT 2015, submitted to IEEE Transactions on Information Theory on July 2015, and revised on January 201

    Degrees of Freedom of Time Correlated MISO Broadcast Channel with Delayed CSIT

    Full text link
    We consider the time correlated multiple-input single-output (MISO) broadcast channel where the transmitter has imperfect knowledge on the current channel state, in addition to delayed channel state information. By representing the quality of the current channel state information as P^-{\alpha} for the signal-to-noise ratio P and some constant {\alpha} \geq 0, we characterize the optimal degree of freedom region for this more general two-user MISO broadcast correlated channel. The essential ingredients of the proposed scheme lie in the quantization and multicasting of the overheard interferences, while broadcasting new private messages. Our proposed scheme smoothly bridges between the scheme recently proposed by Maddah-Ali and Tse with no current state information and a simple zero-forcing beamforming with perfect current state information.Comment: revised and final version, to appear in IEEE transactions on Information Theor
    corecore