3 research outputs found

    Implementation of Vision Based Robot Navigation System in Dynamic Environment

    Get PDF
    In this paper the implementation of robot navigation in the dynamic environment using vision based approach is proposed. Vision based robot navigation has been a fundamental goal in both robotics and computer vision research. In the visual guidelines based navigation system, the motion instructions required to control the robot can be inferred directly from the acquired images. In this work, the algorithm is designed for an intelligent robot which is placed in an unknown environment. The robot detects the signs from a captured images using features based extraction and moves according to the signs. Also, it is able to tackle an encountered obstacle in its way. The robot successfully detects different signs like right, left and stop from an image. DOI: 10.17762/ijritcc2321-8169.15065

    Intelligent Navigation Service Robot Working in a Flexible and Dynamic Environment

    Get PDF
    Numerous sensor fusion techniques have been reported in the literature for a number of robotics applications. These techniques involved the use of different sensors in different configurations. However, in the case of food driving, the possibility of the implementation has been overlooked. In restaurants and food delivery spots, enhancing the food transfer to the correct table is neatly required, without running into other robots or diners or toppling over. In this project, a particular algorithm module has been proposed and implemented to enhance the robot driving methodology and maximize robot functionality, accuracy, and the food transfer experience. The emphasis has been on enhancing movement accuracy to reach the targeted table from the start to the end. Four major elements have been designed to complete this project, including mechanical, electrical, electronics, and programming. Since the floor condition greatly affecting the wheels and turning angle selection, the movement accuracy was improved during the project. The robot was successfully able to receive the command from the restaurant and go to deliver the food to the customers\u27 tables, considering any obstacles on the way to avoid. The robot has equipped with two trays to mount the food with well-configured voices to welcome and greet the customer. The performance has been evaluated and undertaken using a routine robot movement tests. As part of this study, the designed service wheeled robot required to be with a high-performance real-time processor. As long as the processor was adequate, the experimental results showed a highly effective search robot methodology. Having concluded from the study that a minimum number of sensors are needed if they are placed appropriately and used effectively on a robot\u27s body, as navigation could be performed by using a small set of sensors. The Arduino Due has been used to provide a real-time operating system. It has provided a very successful data processing and transfer throughout any regular operation. Furthermore, an easy-to-use application has been developed to improve the user experience, so that the operator can interact directly with the robot via a special setting screen. It is possible, using this feature, to modify advanced settings such as voice commands or IP address without having to return back to the code

    Investigation on the mobile robot navigation in an unknown environment

    Get PDF
    Mobile robots could be used to search, find, and relocate objects in many types of manufacturing operations and environments. In this scenario, the target objects might reside with equal probability at any location in the environment and, therefore, the robot must navigate and search the whole area autonomously, and be equipped with specific sensors to detect objects. Novel challenges exist in developing a control system, which helps a mobile robot achieve such tasks, including constructing enhanced systems for navigation, and vision-based object recognition. The latter is important for undertaking the exploration task that requires an optimal object recognition technique. In this thesis, these challenges, for an indoor environment, were divided into three sub-problems. In the first, the navigation task involved discovering an appropriate exploration path for the entire environment, with minimal sensing requirements. The Bug algorithm strategies were adapted for modelling the environment and implementing the exploration path. The second was a visual-search process, which consisted of employing appropriate image-processing techniques, and choosing a suitable viewpoint field for the camera. This study placed more emphasis on colour segmentation, template matching and Speeded-Up Robust Features (SURF) for object detection. The third problem was the relocating process, which involved using a robot’s gripper to grasp the detected, desired object and then move it to the assigned, final location. This also included approaching both the target and the delivery site, using a visual tracking technique. All codes were developed using C++ and C programming, and some libraries that included OpenCV and OpenSURF were utilized for image processing. Each control system function was tested both separately, and then in combination as a whole control program. The system performance was evaluated using two types of mobile robots: legged and wheeled. In this study, it was necessary to develop a wheeled search robot with a high performance processor. The experimental results demonstrated that the methodology used for the search robots was highly efficient provided the processor was adequate. It was concluded that it is possible to implement a navigation system within a minimum number of sensors if they are located and used effectively on the robot’s body. The main challenge within a visual-search process is that the environmental conditions are difficult to control, because the search robot executes its tasks in dynamic environments. The additional challenges of scaling these small robots up to useful industrial capabilities were also explored
    corecore