1,463 research outputs found

    A Branch and Bound approach for truss topology design problems with valid inequalities

    Get PDF
    One of the classical problems in the structural optimization field is the Truss Topology Design Problem (TTDP) which deals with the selection of optimal configuration for structural systems for applications in mechanical, civil, aerospace engineering, among others. In this paper we consider a TTDP where the goal is to find the stiffest truss, under a given load and with a bound on the total volume. The design variables are the cross-section areas of the truss bars that must be chosen from a given finite set. This results in a large-scale non-convex problem with discrete variables. This problem can be formulated as a Semidefinite Programming Problem (SDP problem) with binary variables. We propose a branch and bound algorithm to solve this problem. In this paper it is considered a binary formulation of the problem, to take advantage of its structure, which admits a Knapsack problem as subproblem. Thus, trying to improve the performance of the Branch and Bound, at each step, some valid inequalities for the Knapsack problem are included

    Designing Volumetric Truss Structures

    Full text link
    We present the first algorithm for designing volumetric Michell Trusses. Our method uses a parametrization approach to generate trusses made of structural elements aligned with the primary direction of an object's stress field. Such trusses exhibit high strength-to-weight ratios. We demonstrate the structural robustness of our designs via a posteriori physical simulation. We believe our algorithm serves as an important complement to existing structural optimization tools and as a novel standalone design tool itself

    Global Optima for Size Optimization Benchmarks by Branch and Bound Principles

    Get PDF
    This paper searches for global optima for size optimization benchmarks utilizing a method based on branch and bound principles. The goal is to demonstrate the process for finding these global optima on the basis of two examples. A suitable parallelization strategy is used in order to minimize the computational demands. Optima found in the literature are compared with the optima used in this work

    Optimal Design of Composite Structures Under Manufacturing Constraints

    Get PDF

    Set Theoretical Variants of Optimization Algorithms for System Reliability-based Design of Truss Structures

    Get PDF
    In this paper, recently developed set theoretical variants of the teaching-learning-based optimization (TLBO) algorithm and the shuffled shepherd optimization algorithm (SSOA) are employed for system reliability-based design optimization (SRBDO) of truss structures. The set theoretical variants are designed based on a simple framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. In addition, the framework is applied to the Jaya algorithm, leading to a set-theoretical variant of the Jaya algorithm. So far, most of the reliability-based design optimization studies have focused on the reliability of single structural members. This is due to the fact that the optimization problems with system reliability-based constraints are computationally expensive to solve. This is especially the case of statically redundant structures, where the number of failure modes is so high that it is impractical to identify all of them. System-level reliability analysis of truss structures is carried out by the branch and bound method by which the stochastically dominant failure paths are identified within a reasonable time. At last, three numerical examples, including size optimization of truss structures, are presented to illustrate the effectiveness of the proposed SRBDO approach. The results indicate the efficiency and applicability of the set theoretical optimization algorithms to solve the SRBDO problems of truss structures

    Mixed Integer Conic Optimization and its Applications

    Get PDF
    In this dissertation, we present our work on the theory and applications of Mixed Integer Linear Optimization (MILO) and Mixed Integer Second Order Cone Optimization (MISOCO). The dissertation is separated in three parts.In the first part, we focus on th

    An outer approximation bi-level framework for mixed categorical structural optimization problems

    Full text link
    In this paper, mixed categorical structural optimization problems are investigated. The aim is to minimize the weight of a truss structure with respect to cross-section areas, materials and cross-section type. The proposed methodology consists of using a bi-level decomposition involving two problems: master and slave. The master problem is formulated as a mixed integer linear problem where the linear constraints are incrementally augmented using outer approximations of the slave problem solution. The slave problem addresses the continuous variables of the optimization problem. The proposed methodology is tested on three different structural optimization test cases with increasing complexity. The comparison to state-of-the-art algorithms emphasizes the efficiency of the proposed methodology in terms of the optimum quality, computation cost, as well as its scalability with respect to the problem dimension. A challenging 120-bar dome truss optimization problem with 90 categorical choices per bar is also tested. The obtained results showed that our method is able to solve efficiently large scale mixed categorical structural optimization problems.Comment: Accepted for publication in Structural and Multidisciplinary Optimization, to appear 202

    Stability-aware simplification of curve networks

    Full text link
    La conception de réseaux de courbes nécessite la considération de plusieurs facteurs: la stabilité de la structure, l'efficience matérielle, et l'aspect esthétique - des objectifs complexes et interdépendants rendant la conception manuelle difficile. Nous présentons une nouvelle méthode permettant de simplifier des réseaux de courbes destinés à la fabrication. Pour un ensemble de courbes 3D donné, notre algorithme en sélectionne un sous-ensemble stable. Bien que la stabilité soit traditionnellement mesurée par l'ordre de grandeur des déformations entraînées par des charges prédéfinies, une telle approche peut s'avérer limitante. Elle ne tient ni compte des effets de vibration pour les structures de grandes tailles, ni des multiples possibilités de forces appliquées pour les structures et objets de plus petite taille. Ainsi, nous optimisons directement pour une déformation minimale avec la charge dans le pire des cas (de l'anglais "worst-case"). Notre contribution technique est une nouvelle formulation de la simplification de réseaux de courbes pour la stabilité dans le pire des cas. Celle-ci mène à un problème d'optimisation semi-définie positive en nombres entiers (MI-SDP). Malgré que résoudre ce problème MI-SDP directement est irréaliste dans la plupart des cas, une intuition physique nous mène à un algorithme vorace efficace. Enfin, nous démontrons le potentiel de notre approache à l'aide plusieurs réseaux de courbes et validons l'efficacité de notre méthode en la comparant de façon quantitative à des approaches plus simples.Designing curve networks for fabrication requires simultaneous consideration of structural stability, cost effectiveness, and visual appeal - complex, interrelated objectives that make manual design a difficult and tedious task. We present a novel method for fabrication-aware simplification of curve networks, algorithmically selecting a stable subset of given 3D curves. While traditionally, stability is measured as the magnitude of deformation induced by a set of predefined loads, predicting applied forces for common day objects can be challenging. Instead, we directly optimize for minimal deformation under the worst-case load. Our technical contribution is a novel formulation of 3D curve network simplification for worst-case stability, leading to a mixed-integer semi-definite programming problem (MI-SDP). We show that while solving MI-SDP directly is impractical, a physical insight suggests an efficient greedy heuristic algorithm. We demonstrate the potential of our approach on a variety of curve network designs and validate its effectiveness compared to simpler alternatives using numerical experiments
    • …
    corecore