44 research outputs found

    DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics

    Full text link
    Robots are still limited to controlled conditions, that the robot designer knows with enough details to endow the robot with the appropriate models or behaviors. Learning algorithms add some flexibility with the ability to discover the appropriate behavior given either some demonstrations or a reward to guide its exploration with a reinforcement learning algorithm. Reinforcement learning algorithms rely on the definition of state and action spaces that define reachable behaviors. Their adaptation capability critically depends on the representations of these spaces: small and discrete spaces result in fast learning while large and continuous spaces are challenging and either require a long training period or prevent the robot from converging to an appropriate behavior. Beside the operational cycle of policy execution and the learning cycle, which works at a slower time scale to acquire new policies, we introduce the redescription cycle, a third cycle working at an even slower time scale to generate or adapt the required representations to the robot, its environment and the task. We introduce the challenges raised by this cycle and we present DREAM (Deferred Restructuring of Experience in Autonomous Machines), a developmental cognitive architecture to bootstrap this redescription process stage by stage, build new state representations with appropriate motivations, and transfer the acquired knowledge across domains or tasks or even across robots. We describe results obtained so far with this approach and end up with a discussion of the questions it raises in Neuroscience

    Modeling the Bat Spatial Navigation System: A Neuromorphic VLSI Approach

    Get PDF
    Autonomously navigating robots have long been a tough challenge facing engineers. The recent push to develop micro-aerial vehicles for practical military, civilian, and industrial use has added a significant power and time constraint to the challenge. In contrast, animals, from insects to humans, have been navigating successfully for millennia using a wide range of variants of the ultra-low-power computational system known as the brain. For this reason, we look to biological systems to inspire a solution suitable for autonomously navigating micro-aerial vehicles. In this dissertation, the focus is on studying the neurobiological structures involved in mammalian spatial navigation. The mammalian brain areas widely believed to contribute directly to navigation tasks are the Head Direction Cells, Grid Cells and Place Cells found in the post-subiculum, the medial entorhinal cortex, and the hippocampus, respectively. In addition to studying the neurobiological structures involved in navigation, we investigate various neural models that seek to explain the operation of these structures and adapt them to neuromorphic VLSI circuits and systems. We choose the neuromorphic approach for our systems because we are interested in understanding the interaction between the real-time, physical implementation of the algorithms and the real-world problem (robot and environment). By utilizing both analog and asynchronous digital circuits to mimic similar computations in neural systems, we envision very low power VLSI implementations suitable for providing practical solutions for spatial navigation in micro-aerial vehicles

    Biologically plausible attractor networks

    Get PDF
    Attractor networks have shownmuch promise as a neural network architecture that can describe many aspects of brain function. Much of the field of study around these networks has coalesced around pioneering work done by John Hoprield, and therefore many approaches have been strongly linked to the field of statistical physics. In this thesis I use existing theoretical and statistical notions of attractor networks, and introduce several biologically inspired extensions to an attractor network for which a mean-field solution has been previously derived. This attractor network is a computational neuroscience model that accounts for decision-making in the situation of two competing stimuli. By basing our simulation studies on such a network, we are able to study situations where mean- field solutions have been derived, and use these as the starting case, which we then extend with large scale integrate-and-fire attractor network simulations. The simulations are large enough to provide evidence that the results apply to networks of the size found in the brain. One factor that has been highlighted by previous research to be very important to brain function is that of noise. Spiking-related noise is seen to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex, and this thesis aims to measure the effects of noise on biologically plausible attractor networks. Our results are obtained using a spiking neural network made up of integrate-and-fire neurons, and we focus our results on the stochastic transition that this network undergoes. In this thesis we examine two such processes that are biologically relevant, but for which no mean-field solutions yet exist: graded firing rates, and diluted connectivity. Representations in the cortex are often graded, and we find that noise in these networks may be larger than with binary representations. In further investigations it was shown that diluted connectivity reduces the effects of noise in the situation where the number of synapses onto each neuron is held constant. In this thesis we also use the same attractor network framework to investigate the Communication through Coherence hypothesis. The Communication through Coherence hypothesis states that synchronous oscillations, especially in the gamma range, can facilitate communication between neural systems. It is shown that information transfer from one network to a second network occurs for a much lower strength of synaptic coupling between the networks than is required to produce coherence. Thus, information transmission can occur before any coherence is produced. This indicates that coherence is not needed for information transmission between coupled networks. This raises a major question about the Communication through Coherence hypothesis. Overall, the results provide substantial contributions towards understanding operation of attractor neuronal networks in the brain

    Reinforcement learning in intelligent control : a biologically-inspired approach to the relearning problem

    Get PDF
    Merged with duplicate record 10026.1/2240 on 08.20.2017 by CS (TIS)The increasingly complex demands placed on control systems have resulted in a need for intelligent control, an approach that attempts to meet these demands by emulating the capabilities found in biological systems. The need to exploit existing knowledge is a desirable feature of any intelligent control system, and this leads to the relearning problem. The problem arises when a control system is required to effectively learn new knowledge whilst exploiting still useful knowledge from past experiences. This thesis describes the adaptive critic system using reinforcement learning, a computational framework that can effectively address many of the demands in intelligent control, but is less effective when it comes to addressing the relearning problem. The thesis argues that biological mechanisms of reinforcement learning (and relearning) may provide inspiration for developing artificial intelligent control mechanisms that can better address the relearning problem. A conceptual model of biological reinforcement learning and relearning is presented, and the thesis shows how inspiration derived from this model can be used to modify the adaptive critic. The performance of the modified adaptive critic system on the relearning problem is investigated based on simulations of the pole balancing problem, and this is compared to the performance of the original adaptive critic system. The thesis presents an analysis of the results from these simulations, and discusses the significance of these results in terms of addressing the relearning problem

    A biologically plausible embodied model of action discovery

    Get PDF
    During development, animals can spontaneously discover action-outcome pairings enabling subsequent achievement of their goals. We present a biologically plausible embodied model addressing key aspects of this process. The biomimetic model core comprises the basal ganglia and its loops through cortex and thalamus. We incorporate reinforcement learning (RL) with phasic dopamine supplying a sensory prediction error, signalling “surprising” outcomes. Phasic dopamine is used in a cortico-striatal learning rule which is consistent with recent data. We also hypothesized that objects associated with surprising outcomes acquire “novelty salience” contingent on the predicability of the outcome. To test this idea we used a simple model of prediction governing the dynamics of novelty salience and phasic dopamine. The task of the virtual robotic agent mimicked an in vivo counterpart (Gancarz et al., 2011) and involved interaction with a target object which caused a light flash, or a control object which did not. Learning took place according to two schedules. In one, the phasic outcome was delivered after interaction with the target in an unpredictable way which emulated the in vivo protocol. Without novelty salience, the model was unable to account for the experimental data. In the other schedule, the phasic outcome was reliably delivered and the agent showed a rapid increase in the number of interactions with the target which then decreased over subsequent sessions. We argue this is precisely the kind of change in behavior required to repeatedly present representations of context, action and outcome, to neural networks responsible for learning action-outcome contingency. The model also showed cortico-striatal plasticity consistent with learning a new action in basal ganglia. We conclude that action learning is underpinned by a complex interplay of plasticity and stimulus salience, and that our model contains many of the elements for biological action discovery to take place

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Invariant object recognition : biologically plausible and machine learning approaches

    Get PDF
    Understanding the processes that facilitate object recognition is a task that draws on a wide range of fields, integrating knowledge from neuroscience, psychology, computer science and mathematics. The substantial work done in these fields has lead to two major outcomes: Firstly, a rich interplay between computational models and biological experiments that seek to explain the biological processes that underpin object recognition. Secondly, engineered vision systems that on many tasks are approaching the performance of humans. This work first highlights the importance of ensuring models which are aiming for biological relevance actually produce biologically plausible representations that are consistent with what has been measured within the primate visual cortex. To accomplish this two leading biologically plausible models, HMAX and VisNet are compared on a set of visual processing tasks. The work then changes approach, focusing on models that do not explicitly seek to model any biological process, but rather solve a particular vision task with the goal being increased performance. This section explores the recently discovered problem convolution networks being susceptible to adversarial exemplars. An extension of previous work is shown that allows state-of-the-art networks to be fooled to classify any image as any label while leaving that original image visually unchanged. Secondly an efficient implementation of applying dropout in a batchwise fashion is introduced that approximately halves the computational cost, allowing models twice as large to be trained. Finally an extension to Deep Belief Networks is proposed that constrains the connectivity of the a given layer to that of a topologically local region of the previous one
    corecore