5 research outputs found

    A Neuron as a Signal Processing Device

    Full text link
    A neuron is a basic physiological and computational unit of the brain. While much is known about the physiological properties of a neuron, its computational role is poorly understood. Here we propose to view a neuron as a signal processing device that represents the incoming streaming data matrix as a sparse vector of synaptic weights scaled by an outgoing sparse activity vector. Formally, a neuron minimizes a cost function comprising a cumulative squared representation error and regularization terms. We derive an online algorithm that minimizes such cost function by alternating between the minimization with respect to activity and with respect to synaptic weights. The steps of this algorithm reproduce well-known physiological properties of a neuron, such as weighted summation and leaky integration of synaptic inputs, as well as an Oja-like, but parameter-free, synaptic learning rule. Our theoretical framework makes several predictions, some of which can be verified by the existing data, others require further experiments. Such framework should allow modeling the function of neuronal circuits without necessarily measuring all the microscopic biophysical parameters, as well as facilitate the design of neuromorphic electronics.Comment: 2013 Asilomar Conference on Signals, Systems and Computers, see http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=681029

    Kickback cuts Backprop's red-tape: Biologically plausible credit assignment in neural networks

    Full text link
    Error backpropagation is an extremely effective algorithm for assigning credit in artificial neural networks. However, weight updates under Backprop depend on lengthy recursive computations and require separate output and error messages -- features not shared by biological neurons, that are perhaps unnecessary. In this paper, we revisit Backprop and the credit assignment problem. We first decompose Backprop into a collection of interacting learning algorithms; provide regret bounds on the performance of these sub-algorithms; and factorize Backprop's error signals. Using these results, we derive a new credit assignment algorithm for nonparametric regression, Kickback, that is significantly simpler than Backprop. Finally, we provide a sufficient condition for Kickback to follow error gradients, and show that Kickback matches Backprop's performance on real-world regression benchmarks.Comment: 7 pages. To appear, AAAI-1
    corecore