104,103 research outputs found

    ARTICULATORY INFORMATION FOR ROBUST SPEECH RECOGNITION

    Get PDF
    Current Automatic Speech Recognition (ASR) systems fail to perform nearly as good as human speech recognition performance due to their lack of robustness against speech variability and noise contamination. The goal of this dissertation is to investigate these critical robustness issues, put forth different ways to address them and finally present an ASR architecture based upon these robustness criteria. Acoustic variations adversely affect the performance of current phone-based ASR systems, in which speech is modeled as `beads-on-a-string', where the beads are the individual phone units. While phone units are distinctive in cognitive domain, they are varying in the physical domain and their variation occurs due to a combination of factors including speech style, speaking rate etc.; a phenomenon commonly known as `coarticulation'. Traditional ASR systems address such coarticulatory variations by using contextualized phone-units such as triphones. Articulatory phonology accounts for coarticulatory variations by modeling speech as a constellation of constricting actions known as articulatory gestures. In such a framework, speech variations such as coarticulation and lenition are accounted for by gestural overlap in time and gestural reduction in space. To realize a gesture-based ASR system, articulatory gestures have to be inferred from the acoustic signal. At the initial stage of this research an initial study was performed using synthetically generated speech to obtain a proof-of-concept that articulatory gestures can indeed be recognized from the speech signal. It was observed that having vocal tract constriction trajectories (TVs) as intermediate representation facilitated the gesture recognition task from the speech signal. Presently no natural speech database contains articulatory gesture annotation; hence an automated iterative time-warping architecture is proposed that can annotate any natural speech database with articulatory gestures and TVs. Two natural speech databases: X-ray microbeam and Aurora-2 were annotated, where the former was used to train a TV-estimator and the latter was used to train a Dynamic Bayesian Network (DBN) based ASR architecture. The DBN architecture used two sets of observation: (a) acoustic features in the form of mel-frequency cepstral coefficients (MFCCs) and (b) TVs (estimated from the acoustic speech signal). In this setup the articulatory gestures were modeled as hidden random variables, hence eliminating the necessity for explicit gesture recognition. Word recognition results using the DBN architecture indicate that articulatory representations not only can help to account for coarticulatory variations but can also significantly improve the noise robustness of ASR system

    Reinforcement Learning of Speech Recognition System Based on Policy Gradient and Hypothesis Selection

    Full text link
    Speech recognition systems have achieved high recognition performance for several tasks. However, the performance of such systems is dependent on the tremendously costly development work of preparing vast amounts of task-matched transcribed speech data for supervised training. The key problem here is the cost of transcribing speech data. The cost is repeatedly required to support new languages and new tasks. Assuming broad network services for transcribing speech data for many users, a system would become more self-sufficient and more useful if it possessed the ability to learn from very light feedback from the users without annoying them. In this paper, we propose a general reinforcement learning framework for speech recognition systems based on the policy gradient method. As a particular instance of the framework, we also propose a hypothesis selection-based reinforcement learning method. The proposed framework provides a new view for several existing training and adaptation methods. The experimental results show that the proposed method improves the recognition performance compared to unsupervised adaptation.Comment: 5 pages, 6 figure

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract
    • …
    corecore