17,718 research outputs found

    Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENA/ELENA sensor

    Full text link
    The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV, within 1-D (2x76 deg). ELENA is a Time-of-Flight (TOF) system, based on oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. After a brief dissertation on the achievable scientific objectives, this paper describes the instrument, with the new design techniques approached for the neutral particles identification and the nano-techniques used for designing and manufacturing the nano-structure shuttering core of the ELENA sensor. The expected count-rates, based on the Hermean environment features, are shortly presented and discussed. Such design technologies could be fruitfully exported to different applications for planetary exploration.Comment: 11 page

    Advances of nanotechnology in agro-environmental studies

    Get PDF
    With the increase in the world population and the demand for food, new agricultural practices have been developed to improve food production through the use of more effective pesticides and fertilisers. These technologies can lead to an uncontrolled release of undesired substances into the environment, with the potential to contaminate soil and groundwater. Today, nanotechnology represents a promising approach to improve agricultural production and remediate polluted sites. This paper reviews the recent applications of nanotechnologies in agro-environmental studies with particular attention to the fate of nanomaterials once introduced in water and soil, to the advantages of their use and their possible toxicology. Findings show that the use of nanomaterials can improve the quality of the environment and help detect and remediate polluted sites. Only a small number of nanomaterials demonstrated potential toxic effects. These are discussed in detail

    Relativistic plasmas in AGN jets - From synchrotron radiation to Îł\gamma-ray emission

    Full text link
    Relativistic jets of plasma are a key ingredient of many types of Active Galactic Nuclei (AGN). Today we know that AGNs are powered by the accretion of inter stellar material into the gravitational field of a Super Massive Black Hole and that this process can release as much power as a whole galaxy, like the Milky Way, from a region that is comparable to the Solar System in size. Depending on the properties of the central energy source, a large fraction of this power can be involved in the acceleration of magnetized plasmas at relativistic speeds, to form large scale jets. The presence of jets affects the spectrum of AGNs through the emission of synchrotron radiation and Inverse Compton scattering of low energy photons, thus leading to a prominent non-thermal spectrum, some times extending from radio frequencies all the way up to Îł\gamma-ray energies. Here we review some characteristic processes of radiation emission in AGN jets, which lead to the emission of photons in the radio, optical, X-ray and Îł\gamma-ray bands, and we present the results of a spectroscopic campaign of optical counterparts. We discuss our observations and their connection with Îł\gamma-ray properties in a scenario that traces the role of relativistic jets in different classes of AGNs, detected both in the local as well as in the remote Universe.Comment: 11 pages, 5 figures (3 in color), proceedings of the XXVIII School on Physics of Ionized Gases (SPIG), accepted for publication on the European Journal of Physics

    Are Boltzmann Plots of Hydrogen Balmer lines a tool for identifying a subclass of S1 AGN?

    Full text link
    It is becoming clear that we can define two different types of nearby AGN belonging to the Seyfert 1 class (S1), on the basis of the match of the intensities of their Broad Balmer Lines (BBL) with the Boltzmann Plots (BP). These two types of S1 galaxies, that we call BP-S1 and NoBP-S1, are characterized, in first approximation, by Broad Line Regions (BLR) with different structural and physical properties. In this communication, we show that these features can be well pointed out by a multi-wavelength analysis of the continuum and of the broad recombination Hydrogen lines, that we carry out on a sample of objects detected at optical and X-ray frequencies. The investigation is addressed to verify whether BP-S1 are the ideal candidates for the study of the kinematical and structural properties of the BLR, in order to derive reliable estimates of the mass of their central engine and to constrain the properties of their nuclear continuum spectrum.Comment: 26 pages, 4 figures (1 multi-paged). Accepted for publication on Advances in Space Research. Contribution to the IX SCSLS
    • …
    corecore