95 research outputs found

    The Quantitative Genetics of Neurodevelopment: A Magnetic Resonance Imaging Study of Childhood and Adolescence

    Get PDF
    Understanding the causes of individual differences in brain structure may give clues about the etiology of cognition, personality, and psychopathology, and also may identify endophenotypes for molecular genetic studies on brain development. We performed a comprehensive statistical genetic study of anatomic neuroimaging data from a large pediatric sample (N=600+) of twins and family members from the Child Psychiatry Branch at the NIMH. These analyses included variance decomposition of structural volumetric endophenotypes at several levels of resolution, voxel-level analysis of cortical thickness, assessment of gene by age interaction, several multivariate genetic analyses, and a search for genetically-mediated brain-behavioral relationships. These analyses found strong evidence for a genetic role in the generation of individual differences in brain volumes, with the exception of the cerebellum and the lateral ventricles. Subsequent multivariate analyses demonstrated that most of the genetic variance in large volumes shares a common source. More subtle analyses suggest that although this global genetic factor is the principal determinant of neuroanatomic variability, genetic factors also mediate regional variability in cortical thickness and are different for gray and white matter volumes. Models using graph theory show that brain structure follows small-world architectural rules, and that these relationships are genetically-determined. Structural homologues appeared to be strongly related genetically, which was further confirmed using novel methods for semi-multivariate quantitative genetic analysis at the voxel level. Studies on interactions with age were mixed. We found evidence of gene by age interaction on frontal and temporal lobar volumes, indicating that the role of genetic factors on these structures is dynamic during childhood. Analyses on cortical thickness at a finer scale, however, showed that environmental factors are more important in childhood, and environmental changes were responsible for most of the changes in heritability over this age range. When assessing the relationship between brain and behavior, we found weak negative genetic correlations and positive environmental correlations between IQ and cortical thickness, which appear to partially cancel each other out. More complex models allowing for age interactions suggest that high and low IQ groups have different patterns of gene by age interactions in concordance with prior literature on cortical phenotypes

    The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design

    Get PDF
    The ABCD twin study will elucidate the genetic and environmental contributions to a wide range of mental and physical health outcomes in children, including substance use, brain and behavioral development, and their interrelationship. Comparisons within and between monozygotic and dizygotic twin pairs, further powered by multiple assessments, provide information about genetic and environmental contributions to developmental associations, and enable stronger tests of causal hypotheses, than do comparisons involving unrelated children. Thus a sub-study of 800 pairs of same-sex twins was embedded within the overall Adolescent Brain and Cognitive Development (ABCD) design. The ABCD Twin Hub comprises four leading centers for twin research in Minnesota, Colorado, Virginia, and Missouri. Each site is enrolling 200 twin pairs, as well as singletons. The twins are recruited from registries of all twin births in each State during 2006–2008. Singletons at each site are recruited following the same school-based procedures as the rest of the ABCD study. This paper describes the background and rationale for the ABCD twin study, the ascertainment of twin pairs and implementation strategy at each site, and the details of the proposed analytic strategies to quantify genetic and environmental influences and test hypotheses critical to the aims of the ABCD study. Keywords: Twins, Heritability, Environment, Substance use, Brain structure, Brain functio

    Shared Genetic and Environmental Influences on Fear, Anxiety, Posttraumatic Stress, and Brain Morphometry

    Get PDF
    Anxiety disorders (ADs) and stress-related disorders are some of the most common psychiatric disorders in the United States. Like other c0mplex psychiatric illness, genetics and neuroimaging research has focused on understanding their underlying neurobiology. Areas within the fear-network play important roles in threat perception, fear conditioning/learning, cognitive processing, and modulation of fear responses including contextual modulation and extinction and have been implicated in ADs as well as stress disorders such as posttraumatic stress disorder (PTSD). The primary gap in the current search for underlying biological mechanisms is in whether biomarkers associated with disorders share genetic influences with the disorders they index. Therefore, the aims of this dissertation are: 1) to examine the shared etiology of PTSD and threat-related brain regions while accounting for trauma using a large sample of male twins who served in the military during the Vietnam War; 2) to elucidate the shared and specific risk factors (genetic, familial environment and unique environment) and their roles amongst fear and anxiety domains in children; and 3) to examine whether brain regions previously implicated in fear processing and anxiety are significantly associated with a genetic factor score indexing fear and anxiety measures in a child sample. Using biometrical twin modeling this dissertation produced several novel findings regarding etiology of PTSD, threat-related domains and associated brain morphometry. Analyses investigating brain morphometric differences as potential endophenotypes for PTSD provided preliminary evidence that their phenotypic association is largely accounted for by environmental influences, specifically trauma exposure. However, sample size-induced model instability limits the ability to make definitive conclusions. Examining domains of fear and anxiety in children suggested a substantial genetic overlap between the two. Finally, the incorporation of a genetic factor score derived from the results of the biometrical modeling of fear and anxiety provided preliminary evidence for a genetic relationship between fear/anxiety and brain regions of interest. Although these results should be interpreted within the context of important limitations, they provide clear evidence that additional research into the genetic relationship between brain regions and disorders with larger sample sizes is justified

    What Twin Studies Tell Us About the Heritability of Brain Development, Morphology, and Function: A Review

    Get PDF
    The development of brain structure and function shows large inter-individual variation. The extent to which this variation is due to genetic or environmental influences has been investigated in twin studies using structural and functional Magnetic Resonance Imaging (MRI). The current review presents an overview of twin studies using MRI in children, adults and elderly, and focuses on cross-sectional and longitudinal designs. The majority of the investigated brain measures are heritable to a large extent (60–80 %), although spatial differences in heritability are observed as well. Cross-sectional studies suggest that heritability estimates slightly increase from childhood to adulthood. Long-term longitudinal studies are better suited to study developmental changes in heritability, but these studies are limited. Results so far suggest that the heritability of change over time is relatively low or absent, but more studies are needed to confirm these findings. Compared to brain structure, twin studies of brain function are scarce, and show much lower heritability estimates (~40 %). The insights from heritability studies aid our understanding of individual differences in brain structure and function. With the recent start of large genetic MRI consortia, the chance of finding genes that explain the heritability of brain morphology increases. Gene identification may provide insight in biological mechanisms involved in brain processes, which in turn will learn us more about healthy and disturbed brain functioning

    Genetics of brain fiber architecture and intellectual performance

    Get PDF
    The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a2 = 0.55, p = 0.04, left; a2 = 0.74, p = 0.006, right), bilateral parietal (a2 = 0.85, p < 0.001, left; a2 = 0.84, p < 0.001, right), and left occipital (a2 = 0.76, p = 0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto-occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p = 0.04 for FIQ and p = 0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition

    Twin-singleton differences in neonatal brain structure

    Get PDF
    pre-printTwin studies suggest that global and regional brain volumes are highly heritable. However, estimates of heritability vary across development. Given that all twin studies are open to the potential criticism of non-generalizability due to differences in intrauterine environment between twins and singletons, these age effects may reflect the influence of perinatal environmental factors which are unique to twins and which may be especially evident early in life. To address this question, we compared brain volumes and the relationship of brain volumes to gestational age in 136 singletons (67 male, 69 female) and 154 twins (75 male, 79 female; 82 DZ, 72 MZ) who had received high resolution MRI scans of the brain in the first month of life. Intracranial volume, total white matter, and ventricle volumes did not differ between twins and singletons. However, cerebrospinal fluid and frontal white matter volume was greater in twins compared to singletons. While gray matter volumes at MRI did not differ between groups, the slope of the relationship between total and cortical gray matter and gestational age at the MRI scan was steeper in MZ twins compared to DZ twins. Post-hoc analyses suggested that gray matter development is delayed in MZ twins in utero and that they experience "catch-up" growth in the first month of life. These differences should be taken into account when interpreting and designing studies in the early postnatal period
    • …
    corecore