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Anxiety disorders (ADs) and stress-related disorders are some of the most common 

psychiatric disorders in the United States. Like other c0mplex psychiatric illness, genetics 

and neuroimaging research has focused on understanding their underlying neurobiology. 

Areas within the fear-network play important roles in threat perception, fear 

conditioning/learning, cognitive processing, and modulation of fear responses including 

contextual modulation and extinction and have been implicated in ADs as well as stress 

disorders such as posttraumatic stress disorder (PTSD).  The primary gap in the current 

search for underlying biological mechanisms is in whether biomarkers associated with 

disorders share genetic influences with the disorders they index.  Therefore, the aims of 

this dissertation are: 1) to examine the shared etiology of PTSD and threat-related brain 

regions while accounting for trauma using a large sample of male twins who served in the 



military during the Vietnam War; 2) to elucidate the shared and specific risk factors 

(genetic, familial environment and unique environment) and their roles amongst fear and 

anxiety domains in children; and 3) to examine whether brain regions previously 

implicated in fear processing and anxiety are significantly associated with a genetic factor 

score indexing fear and anxiety measures in a child sample.  Using biometrical twin 

modeling this dissertation produced several novel findings regarding etiology of PTSD, 

threat-related domains and associated brain morphometry.  Analyses investigating brain 

morphometric differences as potential endophenotypes for PTSD provided preliminary 

evidence that their phenotypic association is largely accounted for by environmental 

influences, specifically trauma exposure. However, sample size-induced model instability 

limits the ability to make definitive conclusions.  Examining domains of fear and anxiety 

in children suggested a substantial genetic overlap between the two.  Finally, the 

incorporation of a genetic factor score derived from the results of the biometrical 

modeling of fear and anxiety provided preliminary evidence for a genetic relationship 

between fear/anxiety and brain regions of interest.  Although these results should be 

interpreted within the context of important limitations, they provide clear evidence that 

additional research into the genetic relationship between brain regions and disorders with 

larger sample sizes is justified.  
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Chapter 1: Global Introduction 
 

Anxiety disorders (ADs) such as panic, generalized anxiety, social phobia, and 

specific phobias are some of the most common psychiatric disorders in the United States.  

Although now in a separate section in the 5th edition of the Diagnostic and Statistical 

Manual1 (DSM-5), posttraumatic stress disorder (PTSD) was once considered part of the 

AD2 group and retains a high degree of comorbidity with the ADs.  Psychiatric 

neuroimaging research has focused on understanding the underlying neurobiology of 

these disorders.  

Before we can begin to examine the underlying biology, it is important to first 

describe what exactly is being examined.  There are two main phenotypic paradigms 

researchers use when studying psychopathology: diagnoses from the DSM and other 

diagnostic classification systems, and systematic domains and constructs from the 

National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC) initiative.  

Until recently DSM diagnoses, and to a lesser extent symptom counts, were the primary 

foci of inquiry.  However, the NIMH has emphasized the need to broaden research of 

mental health outcomes beyond diagnostic boundaries via creation of the RDoC initiative.  

RDoC was created to implement Strategy 1.4 of the 2008 NIMH Strategic Plan: “Develop 

new ways of classifying disorders based on dimensions of observable behaviors and brain 

functions” and assumes that mental illness is a disorder of brain circuits, with 

biosignatures detectable via genetics and clinical neuroscience
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research which will ultimately be used to augment symptom assessment for diagnosis and 

treatment planning.3 This shift beyond diagnoses may also help researchers find 

underlying biological mechanisms that are ultimately shared across diagnoses and in part 

account for the high comorbidity seen between certain disorder groups.  The search for 

underlying biological mechanisms is heavily focused on identifying whether a biomarker 

meets the criteria for an endophenotype of the disorder.  To be considered an 

endophenotype a biomarker must: 1) associate with the disorder in the population; 2) be 

heritable; 3) be state-independent (i.e., is present whether disorder is active or not); 4) 

co-segregate with the illness within families; and 5) also present in unaffected family 

members of affected individuals at a rate higher than that of the general population.4   

Endophenotypes are thought to form part of a neurobiological bridge between 

phenotypes and genotypes.  The focus on endophenotypes and biological 

mechanisms/markers shared across diagnoses may be especially effective for 

neuroanatomic magnetic resonance imaging (MRI) as the functional MRI (fMRI) studies 

are task specific and as such are not as amenable to comparisons across disorders 

compared to structural MRI, which does not require task activation. Currently, research 

involving fMRI uses case-control group comparisons to examine differences in task-

elicited activation of specific regions.  Task-based analyses are designed to elicit activation 

in either a specific structure or a specific network of structures5 (e.g. the fear network) 

and as such, it becomes difficult to disentangle whether differences between studies were 

due to the different tasks used or represent distinct findings.  To a more minor point, the 

possible variations in definitions of a ‘case’ (e.g., only generalized anxiety patients (GAD), 

GAD plus other anxiety disorders such as social anxiety, or panic, or GAD with or without 

major depression comorbidity) can further complicate aggregations of study findings.  
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Hallmarks of ADs in general include excessive fear, avoidance, and worry in 

response to specific stimuli and absent of any imminent danger1.  ADs are some of the 

most common psychiatric disorders within the community6, and neuroimaging research 

has focused on understanding their underlying neurobiology.  Since excessive fear is a 

core element of ADs symptomatology, research into their neurobiology has largely 

derived from the study of fear circuits in animal models.  Key components of this fear 

circuitry include the amygdala, hippocampus, hypothalamus, insular cortex, anterior 

cingulate cortex (ACC) and areas of the prefrontal cortex (PFC) which can go by many 

labels including the ventromedial PFC, and the medial or lateral orbitofrontal cortex 

(mOFC; lOFC).  These areas play important roles in threat perception, fear 

conditioning/learning7,8, cognitive processing, and modulation of fear responses 

including contextual modulation9 and, in some circumstances, extinction10.  The theory 

is that by understanding the mechanisms related to the symptoms more effective 

treatments can be developed or refined.  Figure 1.1 illustrates the divisions of the OFC and 

ACC while figure 1.2 shows the structure of the hippocampus and amygdala. 

      

    Figure 1.1 Divisions of the left orbitofrontal and anterior cingulate cortices 
Panel a shows a sagittal cross section and b shows an inferior view of the left 
hemisphere.  Medial orbitofrontal cortex (OFC) is illustrated in dark blue, lateral 
OFC in light blue.  Caudal anterior cingulate cortex (ACC) is in light green and 
rostral ACC is in dark green. 
	

a	
	b	
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The basic areas of the fear-related neurocircuitry are a useful place to begin 

examining anxiety-related neurocircuitry.  It should be noted that the specific roles of 

many brain regions have not been unequivocally established.  Generally speaking, studies 

examining these areas have found increased amygdala activation in response to disorder-

relevant stimuli in posttraumatic stress11,12, social phobia13–16, and specific phobias17,18.  

There is some evidence to suggest reduced hippocampal volumes may be unique to PTSD 

in comparison to ADs but is not unique across all psychiatric disorders.  Additionally, 

positron emission tomography and fMRI studies of PTSD have found a decrease in19,20, 

or failure to activate21 the PFC (including ACC) when presented with trauma related 

stimuli19,20, and fear extinction21 tasks.  Whereas disorder-relevant stimuli have elicited 

hyperactivation of these areas in GAD22, and phobia patients.23 Evidence also suggests 

that morphometric differences in these PFC areas are associated with these disorders to 

varying degrees.  Thus far it is not clear whether these functional and morphometric 

differences are the cause or the effect of specific disorders, and further research is needed 

to untangle them.  Given the accumulation of studies and meta-analyses that associate 

Figure 1.2 Bilateral Structures of the Hippocampus and Amygdala 
Panel a shows a sagittal view of the hippocampus (light blue) and amygdala (yellow), b 
shows a coronal view and c shows a 3-dimensional bilateral reconstruction of the structures 
with a sagittal cut of the left hemisphere to provide relative spatial context. 

a	 b	 c	
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PTSD and ADs with morphometric differences in the brain, it is a logical next step to 

investigate potential shared etiology between PTSD/ADs and regions of interest (ROIs) 

with the goal of identifying whether ROI morphometries meet the criteria for 

endophenotypes of PTSD/ADs. 

The data available for this dissertation did not have all three phenotypes of interest 

(PTSD, fear, and anxiety) available in one sample.  Therefore, to capitalize on available 

data, lines of inquiry were split between an adult and child sample.  ADs are some of the 

most common psychiatric disorders within a community whether examining adult or 

child prevalence rates, whereas PTSD is less so in adults and children.  Additionally, many 

ADs begin in childhood. Therefore, this dissertation will focus on PTSD and fear-network 

ROIs within an adult sample and will use a child sample to investigate fear and anxiety as 

they relate to fear-network ROIs. 

 

Posttraumatic Stress Disorder and Trauma Exposure 

PTSD Prevalence and Etiology 

Exposure to accidental and interpersonal forms of trauma, such as a car accident 

or physical and emotional abuse, respectively, is associated with many negative 

consequences including the possible development of PTSD.24  PTSD involves the 

persistent reexperiencing of a traumatic event through nightmares, intrusive memories, 

or flashbacks, persistent negative thoughts and emotions, and hyperarousal or excess 

reactivity after the event.  According to the World Mental Health Survey Consortium, the 

United States has one of the highest rates of trauma exposure  with 82% of participants 

from the United States endorsing at least one traumatic event.25  Whereas, most European 

countries had endorsement rates below 80%, and Asian countries generally had even 
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lower rates (52% endorsement in China, and 60% endorsement in Japan).  While 

estimates of the prevalence of trauma in the United States range from 60-90%26, the 

lifetime prevalence of PTSD is 10-12% in women and 5-6% in men with approximately 8% 

of the total United States population developing PTSD at some point in their lifetime.27  

Therefore, it is possible to conceptualize a PTSD diagnosis as an inability to recover from 

the effects of trauma.  Subsequently, understanding the role of trauma exposure on the 

biological systems involved in the development of PTSD may help to improve prevention 

and treatment for individuals at risk for PTSD after exposure to trauma.   

PTSD is a moderately heritable (30-72%) condition across a range of trauma 

types28–31, and several biological systems may be involved in its development.  PTSD is 

highly comorbid with anxiety disorders and major depressive disorder.31–34  The high 

comorbidity may be explained, in part, by substantially overlapping genetic influences as 

is the case with PTSD and MDD in women31 and men34. 

 

Trauma Types 

Trauma exposure can be categorized into a few main types including: 

interpersonal, accidental, military, and childhood.  A major distinction in trauma types as 

identified via principal components analysis is between assaultive (or interpersonal) and 

non-assaultive trauma.30  In the context of civilian trauma,  assaultive trauma includes 

experiences such as being robbed, held captive, sexual assault, and other life threatening 

experiences.30,35  Whereas non-assaultive trauma encompasses experiences such as 

sudden family death, car accident, fire, and natural disasters (i.e. tornado, flood, 

earthquake etc.) and are generally thought to be more random in nature.30,35  In general, 
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individuals exposed to assaultive traumatic events are at a higher risk to develop PTSD 

compared to events without an interpersonal component.35–38  

Men and women experience these types of trauma at differing rates with men 

generally experiencing overall higher rates of trauma exposure with 61% of men 

compared to 51% of women reporting at least one traumatic experience.27  Women are 

more likely to be exposed to interpersonal traumas25,27,35,39, specifically sexual assaults, 

and men are more likely to experience accidents, interpersonal violence, and combat-

based traumas.25,27,39  Additionally, while men experience more events, women were at a 

higher risk for PTSD when controlling for  trauma type in a community based sample35 as 

well as in a meta-analysis.39  

Trauma due to combat exposure during military service is experienced in roughly 

equal proportions between men and women.  Of those who served during the Vietnam era 

30% served in southeast Asia, and 15% of vets are thought to have been directly involved 

in combat40 with an additional 14% exposed to combat hazards while serving.41  Within 

samples of more recent veterans of Operation Enduring Freedom (OEF), Operation Iraqi 

Freedom (OIF), and Operation New Dawn (OND), the rate of combat exposure is 

substantially higher, with 95%42 of returning veterans reporting exposure to at least one 

combat trauma event.  

Trauma exposure that occurs during childhood is thought to have an especially 

strong influence on the development of psychopathology within child- and adulthood to 

a greater extent than experiencing traumatic events as an adult.  This is supported by 

distinct epigenetic43,44 and neurobiological45 alterations that are associated with 

childhood but not adult trauma.  Various studies have reported the prevalence of exposure 

to different trauma types during these developmentally sensitive time periods.  According 
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to the Nation Survey of Children’s Exposure to Violence depending on how trauma is 

defined and the reporter used, 8-12% of American youths (0 - 17 years old) have 

experienced at least one sexual assault, 9-19% have experienced physical abuse by a 

caregiver, and 38-70% have been witness to serious violence within the community.46  

Additionally, 20% of all youths had experienced more than one type of trauma.  Studies 

have shown that higher levels of trauma are linked to more severe forms of distress in 

adolescents.47,48  

When examining the etiology of trauma types, it was found that assaultive trauma, 

being related to human behavior, is influenced by genetic factors, while non-assaultive 

traumas were not.  Heritability of assaultive trauma varies greatly within this broad 

category.  ‘High-risk’ traumas had a heritability estimate of 60%31, combat exposure 

within a male sample estimated heritability at 35-54%49 with the highest heritability 

estimates being associated with receiving combat decoration, and a heritability estimate 

of 20% for a general measure of assaultive trauma.30  It has been theorized that these 

genetic influences may be working through differences in heritable traits such as 

personality50–52.  For example, personality may influence an individual’s choices resulting 

in selecting into environments that ultimately lead to an increase in risk of exposure to a 

traumatic event, such as after volunteering for military service.  Previous studies have 

found various personality traits to be associated with increased likelihood for trauma 

exposure, such as  neuroticism53, psychoticism51 and conduct disorder51,54 (which could 

be an early indicator of antisocial personality traits).  These are examples of gene-

environment correlations and have implications for research examining genetic 

influences on behaviors and are discussed in more detail later.     
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The heritability of exposure to various traumatic experiences highlights the role of 

complex interactions between potential risk factors, and the trauma exposure/situational 

stressors that engenders PTSD development.  Premorbid risk factors, or diatheses, 

represent an individual’s predisposition towards development of PTSD and/or other 

psychopathology and represent things such as genetic vulnerability, social support and 

previous trauma exposure.  Under the diathesis-stress model as diatheses accumulate the 

severity threshold needed to instigate the development of PTSD decreases.55  The tipping 

point for a given individual varies depending on the interaction between the level of 

stress/trauma experienced and number of risk factors present prior to the stressor.  

Therefore, those who are most liable for PTSD development have a greater accumulation 

of diatheses, to the point where they would not require a very severe stressor to reach the 

PTSD development tipping point.  However, this also means that a person with a higher 

level of risk factors would not develop PTSD until they experience a sufficiently severe 

stressor.  

Within this diathesis-stress model the interactions between environmental and 

biological risk factors and the catalytic exposure to stress are complex in nature (e.g. the 

previous example of personality and potentially selecting into environments with greater 

potential for exposure to traumatic experiences).  Research into the stressor/trauma 

exposure aspect of this model found that repeated or prolonged exposures to traumatic 

experiences greatly increases the likelihood of PTSD development.  Broadly, it is thought 

that a cumulative exposure to trauma increases not only risk for development of 

psychopathology56,57 but also symptom severity58 in a dose-dependent manner.  Within 

the context of military service, a strong dose-response relation between severity of combat 

exposure and PTSD symptoms has been observed in both Vietnam and OEF/OIF veteran 
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samples.54,59–63  This dose-response relationship between trauma and PTSD outcomes 

could potentially be acting via several biological pathways associated with responses to 

stress including via brain circuits responsible for fear learning. 

 

PTSD and Brain Regions of Interest 

Current neurobiological models of PTSD implicate the amygdala, hippocampus, 

anterior cingulate cortex (rACC) and ventromedial prefrontal cortex (vmPFC) as regions 

of interest (ROIs).64,65  The amygdala is hypothesized to be hyper-responsive in PTSD 

potentially explaining the hyperarousal, amplified fear responses, and traumatic 

reexperiencing.  Alternatively, the vmPFC and rostral anterior cingulate cortex (rACC) are 

hypo-active, suggesting that they do not properly inhibit amygdala activation.65–67  It is 

not currently understood which of these areas is responsible for the overall disorder-

based fear response outcomes, but it is possible for both situations (underactive vmPFC 

and ACC, and overactive amygdala) to lead to deficits in fear extinction, emotion 

regulation, and contextual processing.68 Changes to hippocampal function are thought to 

contribute to the deficits in contextual processing in addition to the changes commonly 

observed in memory and neuroendocrine regulation.  Additionally, the insula appears to 

be hyper-responsive in PTSD and other anxiety disorders and is thought to mediate 

susceptibility to anxiety.69,70 

Most recent psychiatric neuroimaging research has focused on fMRI compared to 

structural MRI.  The limited structural literature appears to be split regarding reduction 

in hippocampal volume in PTSD, with several supporting reduced volumes71–87 and others 

not.88–94  Both camps appear to have support regardless of population examined, type of 

trauma exposure, or measure of PTSD (symptom counts or diagnoses), but apart from the 
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meta-analyses the studies have small sample sizes.  There have been a few studies on 

amygdala morphology in PTSD.  Two meta-analyses reported reduced amygdala 

volumes,84,95 but several other studies with smaller sample sizes found no significant 

differences between cases and controls.74,83,88,92,96  Reduction in ACC volumes appears to 

have more consistent support across different studies67,97,98 and meta-analyses78,79,84,95,99, 

with one monozygotic discordant twin design study suggesting the reduction in grey 

matter density in the ACC is an acquired disorder indicator (e.g. a stress-induced 

reduction) rather than a pre-existing risk factor.67  This is further supported by another 

study that showed that, while PTSD and ACC volume were associated with measures of 

threat sensitivity and threat response, they also significantly interacted to predict both 

outcomes.  This suggests that ACC volume may play a moderating role regarding both 

threat sensitivity and threat response through impaired habituation in trauma exposed 

individuals.  Furthermore, morphometric studies have also reported reduced grey matter 

density in the insular cortex.67,78,95,97,100  Recently, one study found that a reduction in 

cortical thickness of the prefrontal cortex was associated with PTSD symptom load which 

remained significant after controlling for potential confounds including medication 

status101, supporting the findings of meta-analyses based on PTSD diagnoses.95,99  

Although more limited in scope, these morphometric-based analyses implicate similar 

regions as fMRI studies and overall show that in some capacity the ACC, prefrontal cortex, 

amygdala, insula, and potentially the hippocampus are associated with PTSD.  Further 

research is now needed to determine if these differences in neuroanatomy represent true 

endophenotypes.  
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Resilience to Trauma Exposure and Brain Regions of Interest 

 When investigating the association between PTSD and ROIs it can be difficult to 

distinguish what constitutes a potential risk factor present prior to a traumatic event or 

PTSD and what brain morphology differences are due to effects of trauma exposure 

and/or PTSD disease processes.  One way to untangle this is to incorporate participants 

exposed to trauma who did not develop PTSD or other psychopathology into analyses.  In 

addition to examining PTSD compared to experience-matched controls, it is also possible 

to compare the trauma-exposed controls to healthy controls to identify potential 

protective factors.  

 One study found greater cortical thickness in the right temporal cortex in a group 

who experienced a single traumatic event (Tsunami) compared to healthy controls.102  A 

twin study by Gilbertson et al.82 compared monozygotic twins discordant for service in 

the Vietnam War and found smaller hippocampi of both the deployed twin and the one 

who did not serve predicted the PTSD symptom load of the deployed twin.  These results 

suggest smaller hippocampal volume is a risk factor for PTSD rather than an effect of 

PTSD-related neuroprocesses.  However, their findings are contradicted by two meta-

analyses78,84 that found bilateral reduction in hippocampal volume in trauma-exposed 

controls versus healthy controls, with one study showing even further reduction in 

hippocampal volume in the PTSD group versus the trauma-exposed controls, suggesting 

that trauma exposure and development of PTSD is responsible for the reduction in 

hippocampal volume.84  It should be noted that reduced hippocampal volume is found in 

major depression, bipolar disorder103, schizophrenia104 and chronic 

hypercortisolemia105,106, which is related to chronic stress.  Given these results, reduction 

in hippocampal volume may be a generalized marker for mental health disorders rather 
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than a disorder-specific indicator.  Another PTSD-focused meta-analysis showed reduced 

amygdala volume in trauma-exposed controls compared to healthy controls.79  A rather 

large Australian study with 265 participants focused on early trauma exposure rather than 

PTSD found those with 2 or more adverse childhood events had smaller ACC and caudate 

nuclei volumes compared to those with no adverse events and may implicate the influence 

of early trauma exposure on the developing brain.107 

In summary, most PTSD MRI studies found morphological differences in the 

amygdala, hippocampus, PFC and ACC and these regions have been observed in trauma 

survivors without PTSD as well as in individuals who experienced adverse childhood 

experiences without later psychopathology.  One hypothesis is that these ROI might be 

associated with risk-resilience factors rather than occurring secondary to 

neuropathological processes associated with PTSD. 

 

Fears and Phobias 

Prevalence and Etiology 

Fear represents the emotional-behavioral response to the perception of immediate 

danger, leading one to avoid the threat for discernible survival value.108  Various phobic 

fears are common throughout adulthood, with a lifetime prevalence of 7-12%6, and it is 

consistently found that girls report more fears than boys during childhood and 

adolescence with reliable patterns of waxing and waning in response to developmental 

changes.109–112  

 For researching fears, self-report surveys are a quick, convenient, and inexpensive 

way to assess a wide range of fears and provide researchers and clinicians with a wealth 

of information.  Although there are many fear survey instruments available, the mostly 
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widely used are revisions of Scherer and Nakamura’s Fear Survey for Children.113–116  The 

Fear Survey Schedule for Children-Revised (FSSC-R) is a commonly used self-report 

measure for measuring fears and fearfulness in children and adolescents.114,117,118  Five 

subscales have been consistently found: ‘fear of failure and criticism’, ‘fear of the 

unknown’, ‘fear of small animals’, ‘fear of danger and death’, and ‘medical fears’, but they 

are mutually correlated supporting the use of the total score as a general fearfulness 

index.117  Overall, general fearfulness as defined by the total score of the FSSC-R has been 

found to be moderately heritable (0.29), with heritability of specific subscales ranging 

from 0.46-0.12.119  

Twin studies conducted by our group have found phobias in adults to be 

moderately heritable (30-40%) with phobia subtypes having overlapping genetic and 

environmental influences as well as subtype-specific factors.120–122  These overlapping 

influences help explain the high comorbidity amongst fears and phobias.123  To our 

knowledge, no genetic studies of phobic diagnoses have been conducted in children. 

However, individual fear symptoms in children have been reported as moderately 

heritable with modest familial environmental influences and a greater role for unique 

environment.124–126  There has been limited genetic research on the comorbidity structure 

of fear symptoms in children, with one twin study reporting a shared latent genetic factor 

that influenced all fear symptom clusters in addition to fear-specific factors.124 This 

overlap in genetic influence found in child and adult twin studies could be indexing 

possible shared biological underpinnings, and this dissertation aims to further 

understand their potential brain structure endophenotypes.  
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Fears, Phobias and Brain Regions of Interest 

 Many neurobiological models of phobias and their symptom counts (‘fears’) focus 

on mechanisms of fear conditioning and fear extinction and as such primarily implicate 

the amygdala and vmPFC.  This approach is likely not the complete picture given that 1) 

many individuals with phobias do not report a conditioning event, and 2) only a small 

number of common stimuli or situations are the focus of phobias.127  Despite these known 

shortcomings, fear conditioning and extinction models have provided useful insights into 

the roles of the amygdala, vmPFC, and insula in phobias.  Within fear conditioning 

paradigms an increase in insular cortex128,129, amygdala128,129, and hippocampal activation 

are commonly reported, with mixed findings for rACC18,23,129–131 activation changes.  

Several morphological differences between cases and controls have been associated with 

specific phobias including increased rACC cortical thickness132,133, bilateral increase in 

insular cortical thickness132,133, and increased grey matter volume in the left orbitofrontal 

cortex132 (lOFC), an area within the vmPFC, and reduced hippocampal134,135 and 

amygdalar134,135 volumes.  The amygdala, insula, and OFC appear to be hyper-responsive 

when presented with phobia-related stimuli with a possible corresponding increase in 

size.  These differences in morphometric measures tend to disappear in scans following 

successful treatment providing additional evidence of their involvement with phobic 

neuroprocesses.17,18,136  

 

Anxiety 
Prevalence and Etiology 

Anxiety disorders (ADs) often have a basis in normal anxious concerns; however, 

the degree of anxiety and associated symptoms becomes excessive, uncontrollable, and 
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impairing to an individual’s life.  The AD group is the most prevalent class of psychiatric 

disorders in US adults with a lifetime prevalence of 28.8%.6  Community prevalence rates 

of any current AD in children range between 3 and 9.5%137–139 and the cumulative 

prevalence reaches as high as 31% in adolescence.140  Similar to fears, girls are found to 

have higher rates of ADs throughout both childhood and adulthood.137,141  

As with fears, an efficient way for researchers to assess common anxiety disorders 

is through self-report measures such as the Screen for Child Anxiety Related Emotional 

Disorders (SCARED).  The SCARED was originally developed to screen for anxiety 

disorders within clinical samples142,143 but has also been widely used in community and 

research studies.144,145  It assesses five clusters of childhood anxiety symptoms: 

panic/somatic (PAN), generalized anxiety (GAD), social anxiety (SOC) and separation 

anxiety (SEP) as well as school avoidance. Several twin studies have examined the 

heritability of the SCARED subscales and found the subscales to be moderately heritable 

(0.53-0.60) with no familial environmental influence.146  Additionally, the covariance 

between the SCARED subscales is also almost entirely explained by genetic factors.147  

In general, twin studies have demonstrated that ADs are also moderately 

heritable.148  Like fears and phobias, ADs are highly comorbid with each other, and adult 

twin studies suggest this comorbidity may be due, in part, to genetic risk factors shared 

between disorders.149,150  This high rate of comorbidity is also seen in children, where 40% 

to 60% of children with one AD are estimated to meet criteria for additional ADs151,152 and 

suggests potential shared underlying biological mechanisms. 

 

 

 



	 17	

Anxiety and Brain Regions of Interest 

 ADs are a prevalent problem in the community and neuroimaging research could 

provide insights that may ultimately be used to help inform development of new 

treatments or possibly predict an individual’s response to various treatment types.  It is 

not surprising that current research into the neurocircuitry of anxiety disorders is closely 

linked to fear circuits in animal models.  Both fear and anxiety have a basis in threat 

response, with fear corresponding to more acute and imminent threats, and anxiety 

related to the concern about potential and long-term threats.153  

There has been limited research on differences in volumetric measures associated 

with anxiety disorders.  According to one study with a limited sample size, smaller 

bilateral amygdala volumes were found in panic disorder compared to healthy controls.154 

However, another study reported larger amygdala volumes in pediatric generalized 

anxiety disorder patients compared to healthy controls.155 Within the functional 

neuroimaging literature there appears to be a general consensus of exaggerated amygdala 

activation to a variety of disorder-specific stimuli across many anxiety disorders such as 

panic disorder156,157, social phobia13–16, generalized anxiety.22,158,159  Here again the 

volumetric literature is sparse, but some studies and meta-analyses suggest a reduction 

in grey matter volumes in the rACC across multiple disorders including panic, social 

anxiety, generalized anxiety and specific phobia160–162 and a decrease in cortical thickness 

of the ACC and OFC in older generalized anxiety patients.163  Reduction in left medial OFC 

(mOFC) thickness or grey matter volume has also been associated with panic disorder in 

a few smaller studies.164–166  OFC is often examined in anxiety disorders (primarily panic 

and generalized anxiety) due to its reciprocal connections with the amygdala.  It should 

be noted that a common limitation across several of these anxiety neuroimaging studies 
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is the inclusion of participants taking psychiatric medications, and the analyses were not 

corrected for this potential confound.  Research has shown some medications are 

associated with changes in volumes of specific structures.167  Despite these limitations it 

appears that fear neurocircuitry is involved in some capacity in our current understanding 

of the biological mechanisms of ADs.  

This dissertation examines the relationship between brain ROI and threat-related 

psychopathology in adults (PTSD) and children (anxiety and fears) with the ultimate goal 

of beginning to connect dimensional measures of psychopathology to basic biological 

components of mental health using genetically informative samples.  Based on the 

previous literature presented above, this dissertation will focus on six main regions in 

each hemisphere of the brain: hippocampus, amygdala, rACC, cACC, lOFC, and mOFC 

(which combined with the lOFC capture a commonly studied area of the PFC).  These 

areas have been associated with PTSD and/or ADs and have a known involvement with 

fear neurocircuitry in animal models.  The broad aims of this dissertation will bridge the 

current gaps between heritability of psychopathology, heritability of ROIs, and 

morphometric changes associated with psychopathology.  This will be accomplished by: 

1) examining the etiological relationship between PTSD, specific brain regions, and the 

role of trauma in that relationship, 2) investigate the shared and specific risk factors 

(genetic, familial environment and unique environment) and their roles amongst fear and 

anxiety domains in youth, and 3) determine whether genetic factors shared with fear and 

anxiety are associated with specific brain regions.  These aims and the required analytic 

approaches are summarized below. 
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The Role of Trauma in the Etiology of PTSD and ROIs 

Chapter 2 addresses the first aim of this dissertation by examining the strength of 

the etiological relationships between PTSD and ROIs previously implicated via functional 

and structural MRI studies.  Several areas involved in the processing of threatening 

stimuli have been associated with PTSD.  PTSD28–31 and ROI morphologies168–170 are both 

considered moderately to highly heritable.  Given their heritability estimates and known 

phenotypic association, it is plausible that PTSD and ROIs have a shared genetic etiology. 

Another important consideration in examining this potential etiological 

relationship is gene-environment correlation, because it could falsely appear as a gene by 

environment interaction.171  Previous studies using the Vietnam Era Twin Registry show 

evidence of such gene-environment correlation between PTSD and combat exposure.57-59  

Also, given that exposure to adverse childhood experiences is associated with 

morphometric differences in areas such as the ACC and hippocampus, areas also 

associated with PTSD, it is important to account for trauma exposure when examining 

etiological overlap between PTSD and ROIs.  Morphological differences may in fact be 

risk factors for PTSD development rather than an effect of trauma exposure and PTSD 

neuroprocesses. 

Accordingly, the aim of chapter 2 is to examine the shared etiology of PTSD and 

ROIs while accounting for trauma using a large sample of male twins who served in the 

military during the Vietnam War.  There are several potential models available to fit (e.g. 
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Cholesky, correlated factors, simplex etc.), 

and the model ultimately chosen depends on 

the underlying theory being tested.  Since 

this chapter aims to understand the degree 

of etiological overlap between PTSD and 

specific ROIs the correlated factors model is 

the best choice for these analyses.172  As 

shown in Figure 1.3	 the correlated factors 

approach decomposes variances of variables into genetic (A) and environmental (C and 

E) factors separately, and the correlations of the factors across the variables are estimated 

(rA, rC, rE).		The correlated factors approach allows the estimating of latent sources of 

variance for both PTSD symptoms and ROI measures as well as the correlation between 

the latent sources of each variable.  Despite substantiated associations found between 

PTSD and specific brain ROIs and their moderate heritability estimates, we still do not 

know if covariation of these two phenotypes is due to overlapping genetic factors.  

Without understanding the nature of this relationship, it will be more difficult to 

comprehend how underlying mechanisms and genetic endophenotypes lead to 

psychopathology.  Therefore, the contribution of this chapter is significant because it will 

be the first to formally test these ROIs as potential endophenotypes of PTSD.  

Next, the role of trauma will be accounted for in this model via moderation on the 

individual variance components.  Since trauma is known to influence both PTSD and ROI 

measures, we aim to understand PTSD and ROIs in the context of trauma exposure.  By 

understanding the interplay of trauma, genetic factors, ROIs, and PTSD in adults we will 
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be able to better identify potential endophenotypes/risk-resilience factors present in non-

trauma exposed adults.  

 

The Shared Etiology of Fear and Anxiety in Juvenile Twins 

 Fear and anxiety are conceptualized as responses to acute or potential threat, 

respectively.  Adult twin studies have found substantial interplay between genetic and 

environmental factors influencing fear disorders (phobias) and anxiety disorders.  

Research in children, however, has largely examined these factors independently.  Thus, 

there exists a substantial knowledge gap regarding the underlying etiologic structure of 

these closely-related constructs during development.  Given the partial distinction 

between risk factors for phobias and other ADs in adults, it is important to examine their 

childhood precursors.  Furthermore, early fear and anxiety disorders are the strongest 

predictors of later psychiatric comorbidity.173  

 Chapter 3 addresses this gap by examining measures of fear (as indexed by the 

FSSC-RSF) and anxiety (as indexed by the SCARED) in a juvenile twin sample.  The aim 

of this chapter is to elucidate the shared and specific risk factors (genetic, familial 

environment and unique environment) and their roles amongst fear and anxiety domains 

in children.  First, chapter 3 focuses on understanding the etiology shared between 

anxiety symptom clusters on the one hand and the etiology shared between fear symptom 

clusters on the other.  Second, etiology shared between the anxiety and fear clusters is 

examined via a correlated factors model similar to that in chapter 2.  Lastly, an 

independent pathway model provides a more flexible and detailed representation of the 

covariance structure between all of the clusters beyond the simple factor correlations 

estimated in the correlated factors model.  This set of analyses will investigate the 
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underlying etiology of fear and anxiety symptoms and provide a possible reason for the 

highly diffuse symptom patterns seen during development. 

 

The Shared Etiology of Fear and Anxiety with Cortical and Subcortical 

Structural Measures 

One of the primary goals of the RDoC framework is to incorporate multiple levels 

of information from genomics to circuits to self-report in order to understand the nature 

of psychiatric illnesses.  To incorporate this concept into this dissertation the last part of 

this dissertation will incorporate the genetic findings from the previous chapter on self-

report measures with preliminary structural neuroimaging data.  This will test whether 

ROIs are potential endophenotypes for fear and anxiety in children.  

To be considered an endophenotype a biomarker must be proven to associate with 

the disorder, be heritable, and have a genetic relationship to the disorder identified 

through either family, twin, or measured genotype based analyses.4  The neuroimaging 

data available for this chapter is not sufficient for a well-powered twin study into the 

heritability of ROIs specifically.  However, by incorporating the results from chapter 3 it 

is possible to create a genetic factor score indexing latent liability to fear/anxiety, which 

can then be used to test whether ROIs have a genetically-based relationship with 

fear/anxiety in children.  

The genetic score is thought to be more proximal than phenotypic symptom 

measures to the biological processes related to fear and anxiety measures, and as such 

may provide a stronger link between fear and anxiety with ROIs.  To test this hypothesis, 

genetic factor scores indexing an individual’s latent liability to fear/anxiety are 

incorporated into a mixed effect regression to predict ROI measures.  A mixed effect linear 



	 23	

regression allows for the control of the non-independence of twin pairs by clustering 

based on family and zygosity.  This allows for more accurate estimations of confidence 

intervals that would otherwise be artificially tighter due to the non-independence of 

participants.  Site of scanner, age, sex, and total intracranial volume will also be added to 

the regression as fixed effect covariates.  By examining the genetic factor score, chapter 4 

aims to assess whether the ROIs are potential endophenotypes for fear and anxiety in 

children.  

As a post-hoc follow-up to these analyses, we will also test whether the fear and 

anxiety total scale sum scores predict hippocampal volumes given prior findings.  This 

may elucidate whether either one of these scales is the main driving force behind findings 

from the genetic score regressions.  However, given our sample size and the complex 

nature of both acquisition of neuroimaging data in children and highly comorbid 

internalizing disorders, we are cautiously optimistic about any potential findings 

remaining significant after multiple testing corrections.  Regardless, these analyses would 

be the first to examine these ROIs as potential endophenotypes for fear and anxiety using 

a dimensional approach in children. 

 Overall, this dissertation will elucidate the etiological relationship between PTSD 

and related traits (anxiety and fear) with specific brain ROIs in a trans-diagnostic 

framework.  The primary gap in the current understanding of brain morphometry 

endophenotypes is whether specific regions of interest (ROIs) have a genetic relationship 

to disorders to which they are phenotypically associated.  Investigating whether ROIs 

meet endophenotypic criteria for PTSD, fear and anxiety will begin to fill these critical 

gaps within the PTSD and child anxiety literatures.  This knowledge will be particularly 
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useful as the fields of neuroimaging and genetics continue to integrate and larger 

neuroimaging datasets become publicly available.  
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Chapter 2: The Moderating Role of Trauma on the Shared Etiology of Post-
Traumatic Stress Disorder and Brain Regions of Interest 
 

 

This chapter addresses the first aim of this dissertation by examining the strength 

of the relationship between post-traumatic stress disorder (PTSD) and brain regions of 

interest previously implicated via functional and structural magnetic resonance imaging 

(MRI).  Given the accumulation of studies and meta-analyses that associate PTSD with 

morphometric differences in the brain, it is a logical next step to investigate potential 

shared etiology between PTSD and regions of interest (ROIs) with the goal of identifying 

whether ROI morphometries meet the criteria for endophenotypes of PTSD.  To identify 

whether a biomarker is an actual endophenotype it must associate with the disorder, be 

heritable, and have a genetic relationship to the disorder identified through either family, 

twin, or measured genotypic analyses.4  The aim of this chapter is to assess whether ROIs 

implicated in stress response meet the criteria for an endophenotype.  Traumatic stress is 

also associated with lasting changes in these areas and, as such, understanding the 

interplay of trauma, genetics, ROIs, and PTSD in adults will better inform the ability to 

identify potential endophenotypes/risk factors present in non-trauma exposed adults. 

 

Regions of Interest 

Thus far, functional neuroimaging studies have mainly examined differences 

between PTSD and healthy controls with regards to activation of the fear-network and
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related cortical and subcortical areas.174  The more limited structural imaging literature 

has also predominately used case/control study designs.  PTSD symptoms are thought to 

be the behavioral manifestation of stress-induced changes in function and structure of 

these areas, which may also underlie the changes in endocrine and immune systems 

associated with PTSD.  As reviewed in Chapter 1, the hippocampus78,84,86, amygdala84,95, 

areas of the PFC95,99, and ACC78,79,84,95,99 have varying degrees of support for their 

involvement in PTSD, with generally smaller subcortical volumes (hippocampus and 

amygdala) and thinner cortical thicknesses (vmPFC and ACC) found to be associated with 

PTSD compared to healthy and/or trauma-exposed controls.  The hippocampus and 

vmPFC have conflicting or limited support, respectively, for their structural differences 

associated with PTSD.  By contrast, the amygdala has gained more recent and consistent 

support from large meta-analyses.84,95  Finally, the ACC has the most conclusive evidence 

for grey matter atrophy associated with PTSD67,78,84,95,97–99,175. Given the previous 

literature, it is hypothesized that PTSD will be significantly associated with reduction in 

volumes of the hippocampus and amygdala as well as thinner average cortical thicknesses 

for the ACC and areas of the PFC: the lOFC, and mOFC.  The literature appears to be fairly 

consistent regarding an inverse direction of association for amygdala and ACC with PTSD 

and as such these areas appear to hold the most potential for significant findings in these 

data.  There appears to be more conflict in the literature regarding hippocampus and PFC 

areas (lOFC and mOFC), therefore non-significant findings in these areas would not be 

surprising.  

 

 

 



	 27	

Trauma 

Exposure to a traumatic experience is necessary but not sufficient for a diagnosis 

of PTSD.1  Previous research shows there are heritable risk factors for PTSD, with some 

twin studies estimating that 30-72% of the variance of PTSD is accounted for by genetic 

factors with the remaining variance accounted for by environmental factors unique to 

each twin.28–31,176  Trauma in the context of combat exposure is known to partially 

account for the prevelance177 and chronicity178 of PTSD, with those who experienced the 

highest levels of combat exposure continuing to experience elevated PTSD symptom 

levels up to 25 years after the exposure.  Likewise, in noncombat trauma children with 

the highest levels of exposure to a hurricane experienced higher levels of PTSD 

symptoms in a dose-response manner.179  Given that not all who are exposed to 

traumatic events develop PTSD, it is plausible that these experiences interact with facets 

of an individual and affect their liability towards PTSD.   

According to the diathesis-stress model of PTSD, an individual’s premorbid risk 

factors interact with a stressor to produce a PTSD outcome.55   One possible route for this 

interaction is if a traumatic event specifically interacts with underlying genetic liability 

for PTSD and increases the risk for the disorder.  This would be an example of gene by 

environment interaction (GxE).  In this case GxE implies the effect of exposure to trauma 

is conditional on a person’s genetic liability towards the disorder.  Trauma is thought to 

change the heritability of PTSD via two hypothetical routes.180  In one, combat exposure 

could increase the heritability of PTSD by causing the underlying differences in genetic 

risk to manifest their effects.  Only under certain environmental conditions might a 

genetic predisposition manifest. A study using the full Vietnam Era Twin Registry found 

just that when examining the moderating role of an ordinalized combat exposure measure 
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on the heritability of PTSD diagnoses.180  In this study, as theorized, the influence of 

trauma exposure was stronger in those with higher levels of trauma.  In the other route, 

combat exposure could ultimately decrease heritability of PTSD in a scenario where the 

severity of the trauma is great enough that it overwhelms any potential genetic effects so 

that essentially anyone who is exposed develops PTSD, regardless of their genetic 

predisposition.181  

In addition to genetic liability interacting with combat exposure to affect risk of 

PTSD, the influence of environmental factors on PTSD risk may vary depending on the 

level of combat exposure.  These environmental effects can be shared between twins 

(familial environment CxE) or unique to an individual (unique environment ExE).  Twin 

studies that incorporate moderation allow for the examination of GxE, CxE and ExE 

effects.  Combat exposure could increase the influence of other environmental factors 

such as previous trauma from childhood or civilian life.  Similar to genetic influences, the 

environmental influences may decrease in the presence of combat exposure due to 

extreme exposure overriding any other environmental protective/risk factors for PTSD. 

One study that previously examined the effect of trauma due to combat exposure on PTSD 

found the influence of heritability and unique environment increased at higher levels of 

combat exposure.180  That is to say, those with the most severe combat exposure levels 

were at an increased risk of PTSD due to interactions with both genetic and environmental 

factors.  

The effects of trauma exposure on brain morphology and circuitry without a later 

diagnosis of PTSD or other psychopathology are not commonly examined.  However, 

well-designed studies do compare PTSD to healthy controls as well as to trauma-exposed 

controls, and this is often where understanding of trauma-specific effects derives.  Of 
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studies conducted in this manner, meta-analyses have found bilateral reduction in 

hippocampal volume78,84 in trauma-exposed controls versus healthy controls as well as 

reduced amygdalar volumes. 79 Those exposed to trauma early in life had smaller ACC 

volumes compared to controls and suggests this early trauma exposure may influence the 

developing brain.107  Studies have shown that trauma is associated with morphometric 

differences in the brain, and a twin study demonstrated trauma’s moderation of the 

genetic and environmental influences on PTSD.  Therefore, it is important to account for 

the potential role of trauma when examining the relationship between PTSD and ROIs. 

 
Study Aims 
 The aims of the present chapter are to 1) identify brain ROIs previously implicated 

in PTSD that are significantly associated with PTSD sum scores in this sample; 2) examine 

the genetic and environmental bases for significantly associated ROIs and PTSD symptom 

sum scores; and 3) examine the extent to which trauma interacts with the shared genetic 

and environmental factors of PTSD and ROIs associated with PTSD.  Aim 3 allows the 

examination of competing hypotheses about the effect of trauma on PTSD and ROIs.  

These aims will be addressed by using mixed effect linear regressions and correlated 

factor twin models. 

 

Methods 

Participants 

Participants in this study are middle-aged male twins who participated in Wave 2 of 

the Vietnam Era Twin Study of Aging182 (VETSA) with a mean age of 61.72 (SD = 2.45) at 

time of assessment.  All VETSA participants served in some branch of the military 

between 1965 and 1975 with a mean age of entry to the military of 19.30 years (SD = 1.38), 
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with the majority of the sample not serving in combat or in south east Asia.  This sample 

is 88.3% non-Hispanic white, 5.3% African American, 3.4% Hispanic, and 3% “other”, 

and is very similar to American men in this age range with respect to health and lifestyle 

characteristics.183  There was no selection criteria for this sample from the Vietnam Era 

Twin Registry beyond safety measures required for the MRI portion of the protocol, such 

as no metal present in the body.  The University of California San Diego ethics committee 

approved this study, and written consent was obtained from all participants.  

Measures 

PTSD 

PTSD symptom counts were measured 

using the PTSD symptom checklist at wave 2 

assessment.  This scale consists of 17 

retrospective items of symptoms experienced 

within the last month on a Likert scale (1 = ‘not 

at all’ to 5 = ‘extremely’).  Sum scores were 

calculated for those missing less than 10% of 

their responses by prorating for the number of 

non-missing responses, with less than 2% of the 

sample exceeding this missingness threshold.  

Sum scores range from 17 to 84 (Mean= 26.36 SD= 10.66, skew= 2.02) with a higher score 

indicating higher levels of PTSD symptoms and had good internal consistency with a 

Cronbach’s alpha = 0.94.  Within this sample a total of 94 participants (7.8%) meet 

criteria for a probable PTSD diagnosis based on DSM- IV criteria, which is consistent with 

PTSD rates seen in the general population as well as in other samples of Vietnam era 
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veterans.184,185  This sample contains both individuals who served in southeast Asia as well 

as those stationed elsewhere and as such a lower prevalence rate is expected when 

compared to samples of only Vietnam theater veterans or more contemporary veteran 

populations. 

 
Combat Trauma Exposure  

To quantify combat trauma, the 18- item 

Combat Exposure Index was used, which 

participants completed by mail as part of a prior 

study, the Survey of Health.  Participants 

completed this index at a mean age of 37.46 years 

old (SD = 2.49) with a mean time since military 

service of 18.16 years.. The mean age at military 

service was 19.30 years (SD = 1.38).  This index 

assessed personal history of specific combat roles 

and experiences that an individual could 

experience during the Vietnam War including flying in aircraft or helicopter attacks, 

serving on river patrols, receiving incoming fire, and being captured or wounded.  The 

Combat Exposure index has demonstrated good internal consistency and predictive 

validity.186   Total number of endorsed experiences ranged from 0 to 16 (Mean = 1.48, SD 

= 2.82, skew = 2.16).  Figure 2.2 shows a histogram of total endorsed combat experiences. 

Civilian and childhood trauma were not assessed by measures used in these analyses.  

Additionally, this measure only accounted for combat situations experienced in the 

Vietnam theater.  However, only 30% of this sample were stationed in southeast Asia at 

Figure 2.2 Histogram of Combat 
Experience Counts 
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some point during their military service, which partly accounts for the lower level of 

trauma exposure compared to more contemporary veteran samples.  Of those stationed 

in southeast Asia the mean number of combat exposures was 5.49 (SD = 3.13, skew = .63).   

Due to the moderating role of trauma, those without combat exposure data (incomplete 

or missing combat exposure index data) were excluded from these analyses.  A total of 

1,207 individuals have PTSD and combat exposure data.   

 
MRI acquisition  

MRI scans were collected as part of the wave 2 assessments at two sites: University 

of California, San Diego (UCSD) and the Massachusetts General Hospital (MGH).  

Imaging and questionnaire data were assessed during the same visit and both twins were 

present on the same days.  At UCSD a General Electric 3T Discovery 750 scanner with an 

eight-channel phase array head coil was used.  Imaging protocol included sagittal 3D fast 

spoiled gradient echo (FSPGR) T1-weighted volume optimized for maximum gray/white 

matter contrast with the following parameters: TE= 3.164 msec; TR= 8.084 msec; 

TI=600 msec; flip angle=8°; pixel bandwidth=244.141; FOV=24 cm; frequency=256; 

phase =192; slices=172; slice thickness=1.2mm.  At MGH a Siemens Tim Trio with a 32-

channel head coil was used.  The imaging protocol included a 3D magnetization-prepared 

rapid gradient-echo (MPRAGE) T1-weighted volume optimized for maximum gray/white 

matter contrast with the following parameters: TE=4.33 msec; TR=2170 msec; TI= 1100 

msec; flip angle=7°; pixel bandwidth= 140; slices= 160; slice thickness=1.2mm.  A total 

of 584 twins were scanned across the two sites. 
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MRI Processing   

The processing of the structural MRI images is described elsewhere in further 

detail169.  Processing of images was performed using standard, automated procedures 

available in the Freesurfer image analysis software suite, which is freely available for 

download and fully documented (Version 6.0, http://surfer.nmr.mgh.harvard.edu/).  

Processing consisted of motion correction187, correction of distortion due to gradient 

nonlinearity and B1 field inhomogeneity, image intensity normalization188, removal of 

non-brain tissue using a hybrid watershed/surface deformation procedure189, and 

automated Talairach transformation.  FreeSurfer software package routines190,191 were 

used to define gray matter, white matter, segmentation of subcortical structures, and 

cerebral spinal fluid segmentation.  The procedures used for cortical thickness 

measurement have been validated against histological analysis192 and manual 

measurements193,194.  After image processing subcortical volume and average cortical 

thickness data were available from 447 twins (110 monozygotic twin pairs, 75 dizygotic 

twin pairs and 77 singletons).  The most common reason for exclusion of a scan was due 

to excessive motion in the scanner which prohibited accurate assessment of brain 

morphometry.  

 

Cortical and Subcortical Measures    

Prior to all analyses, all ROIs were regressed on age, scan site, and estimated 

intracranial volume to remove the fixed effects of these covariates, i.e., the residuals were 

used in subsequent analyses.  The ROIs examined in this chapter include hippocampal 

volume (N = 398), amygdala volume (N = 402), rostral anterior cingulate cortex (rACC; 

N = 397) mean thickness, caudal anterior cingulate cortex (cACC; N= 397) mean 
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thickness, lateral orbitofrontal cortex (lOFC; left hemisphere N = 396, right hemisphere 

N = 397) mean thickness, and the medial orbitofrontal cortex (mOFC; N = 397) mean 

thickness.  Due to bilateral asymmetry within the brain the left and right hemispheres of 

each of these regions were analyzed separately, for a total of 12 ROIs. 

 

Statistical Analyses 

Mixed Effect Linear Regression   

As a preliminary analysis, mixed effect linear regressions were used to identify 

which brain ROIs previously implicated in PTSD were associated with the PTSD symptom 

sum score in this data.  Given the inconsistent nature of the extant literature significant 

associations for all ROIs were not expected in this dataset.  Therefore, preliminary 

analyses were needed to identify significant ROIs to perform the primary analyses of this 

chapter.  Random effects models were used to adjust for possible effects of correlated 

observations in the twin data.  In each model, family ID and zygosity respectively denoted 

family membership and whether the pair was monozygotic or dizygotic and were entered 

as random effects.  The umx R package195  was then used to obtain 95% confidence 

intervals for all standardized beta estimates.  

 

Twin Modeling   

This study used the classic twin design, which leverages the differences between 

MZ and DZ twin types to decompose phenotypic variation into additive genetic (A), 

common environmental (C), and unique environmental (E) factors196.  Because MZ twins 

share 100% of their genes and DZ twins share, on average, 50% of their segregating genes, 

genetic factors contribute twice as much to the MZ twin correlation than to the DZ twin 
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correlation.  Common environmental factors are shared factors that make twin pairs more 

similar, regardless of their zygosity.  Unique environmental factors are specific to the 

individual and represent experiences not shared by twins and contribute to neither MZ 

nor DZ twin correlations.  The unique environment component also captures 

measurement error. 

Correlated Factors Twin Model.  There are several potential bivariate models 

available to fit (e.g. Cholesky, correlated factors, simplex etc.) and the model chosen 

should depend on the underlying theory being tested172.  Since this chapter hypothesizes 

there are genetic and environmental overlaps between PTSD and specific ROIs, the 

correlated factors model is the best choice for these analyses.  It is possible to directly test 

whether ROIs qualify as PTSD endophenotypes with this correlated factors approach.  In 

the correlated factors model, variances of variables are decomposed into genetic and 

environmental factors separately, and the correlations of the factors across the variables 

are estimated (rA, rC, rE).  The correlated factors approach is specified for each latent 

source of variance (genetic [A], familial environment [C], and unique environment [E]) 

and allows estimation of latent sources of variance for PTSD symptoms, ROI measures, 

and the correlation between the latent sources of each variable.  A low genetic correlation 

would suggest PTSD and ROIs were influenced primarily by separate genes, and likewise 

a high environmental correlation would suggest there exist environmental events that 

influence both PTSD and ROIs. 

Moderation.  An underlying assumption of the classic twin model is that genetic 

and environmental variance is consistent across environmental conditions (i.e. 

homoscedastic).  Heteroskedasticity arises when genetic and environmental factors vary 

as a function of a moderator and represents genetic sensitivity to the environment.  



	 36	

Moderators can be purely environmental (e.g., earthquakes), or another trait also under 

some degree of genetic control (e.g., personality traits).  Gene-environment interactions 

can be parameterized in this model by having the variance decomposition of the trait (T) 

as a linear function of a moderator (M), after accounting for the main effect of the 

moderator variable on the trait.  The moderator has a main effect on the trait (as seen in 

the moderation of the mean of T), in addition to a moderating effect on the residual A, C, 

and E variance components of the trait.  In addition to A, C, and E estimates, β parameters 

(accounting for the moderating effect of M on each path) are also estimated.  A β 

coefficient significantly different from zero would indicate the presence of moderation on 

that variance component, with a larger β indicating a greater degree of moderation.  It is 

important to remember that not only is PTSD liability heritable, but trauma exposure is 

also moderately heritable.30,49  This is an example of gene-environment correlation.197  To 

account for gene-environment correlation the mean of T is regressed on M for both twins.  

This approach reduces false positive GxE effects for two main circumstances 1) when M 

and T are correlated with each other and 2) when M is correlated across twins.  False 

positive inflation can occur when the moderator is correlated between twins.198 

Three primary biometrical models were examined that investigated: 1) the etiology 

of PTSD; 2) the shared etiology of PTSD and ROIs; and 3) the shared etiology of PTSD, 

ROIs moderated by trauma.  For each of the primary models, submodels were tested by 

dropping parameters and comparing the fit statistics to the full model (Model 1) to 

determine the best-fitting model.  A full information maximum likelihood approach for 

raw data implemented in the OpenMx software was used.199  Model fits were compared 

using the difference in negative two log-likelihood (Δ-2LL) for nested models, and with 

Akaike Information Criterion (AIC) for non-nested models with lower values indicating a 
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better fit.200  Under certain  regularity conditions, Δ-2LL is distributed as χ2 with degrees 

of freedom equal to the models’ difference in the number of free parameters.201  AIC is an 

index that balances explanatory power with parsimony.  Parsimony is an important 

consideration in maximum likelihood approaches because log-likelihoods will continue 

to decrease with additional parameters estimated, resulting in “overfitting”.  AIC 

penalizes models with many parameters once they improve fit by less than 2LL units, and 

provides an appropriate balance between model complexity and explanatory power as 

manifest by the degree of misfit.202 

 

Results 
 
Mixed Effect Regression Analyses 

Preliminary analyses were used to identify brain ROI associated with PTSD sum 

scores from a list of potential brain ROI based on the extant literature and as such do not 

correct for multiple-testing.  Correlations between all variables are shown in Table 2.1.  

Each ROI was examined in a separate analysis, and Table 2.2 summarizes the results.  All 

12 ROIs (six in each hemisphere) are listed with their corresponding standardized beta 

estimate, confidence interval (CI), t- and p-values.  Only three regions (right rACC, left 

lOFC, and left mOFC) had confidence intervals that did not include zero and were 

significantly associated with PTSD sum scores after accounting for the non-independence 

of twin pairs.  These three areas were then examined in bivariate twin analyses.
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Table 2.1 Correlations Between PTSD, Trauma, and Brain Morphometry Variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. PTSD  
              

2. Trauma .23 
<.001              

3. Age -.01 
.66 

.20 
<.001             

4. L Hipp -.08 
.12 

-.03 
.56 

-.05 
.32            

5. R Hipp -.11 
.02 

-.04 
.42 

-.04 
.47 

.73 
<.001           

6. L amyg -.01 
.81 

.03 

.52 
.00 
.97 

.40 
<.001 

.36 
<.001          

7. R amyg -.03 
.57 

.03 

.55 
-.05 
.29 

.37 
<.001 

.33 
<.001 

.58 
<.001         

8. L cACC -.04 
.45 

.00 

.96 
.11 
.02 

.01 

.88 
.01 
.85 

.00 

.95 
-.06 
.21        

9. R cACC -.06 
.25 

.00 

.95 
.08 
.13 

.04 

.43 
-.03 
.52 

-.10 
.04 

-.08 
.10 

.37 
<.001       

10. L rACC -.04 
.42 

.14 

.01 
.11 
.03 

.08 
.13 

.01 

.78 
.03 
.49 

-.01 
.87 

.37 
<.001 

.34 
<.001      

11. R rACC -.14 
<.001 

0.4 
.42 

.12 

.01 
-.03 
.50 

-.06 
.22 

-.10 
.05 

-.08 
.10 

.31 
<.001 

.41 
<.001 

.36 
<.001     

12. L lOFC -.11 
.03 

-.08 
.03 

.00 

.94 
.14 

<.001 
.08 
.10 

.17 
<.001 

.07 

.14 
.25 

<.001 
.33 

<.001 
.38 

<.001 
.28 

<.001    

13. R lOFC -.07 
.17 

-.03 
.63 

.05 

.28 
.04 
.43 

-.03 
.58 

.02 

.65 
.00 
.96 

.31 
<.001 

.29 
<.001 

.36 
<.001 

.25 
<.001 

.65 
<.001   

14. L mOFC -.11 
.03 

.06 

.02 
.08 
.13 

.02 
.71 

.02 
.75 

-.02 
.75 

-.04 
.44 

.29 
<.001 

.34 
<.001 

.45 
<.001 

.36 
<.001 

.45 
<.001 

.36 
<.001  

15. R mOFC -.07 
.18 

.00 

.94 
.12 
.01 

.03 
.61 

-.03 
.53 

-.01 
.81 

-.05 
.37 

.24 
<.001 

.37 
<.001 

.42 
<.001 

.48 
<.001 

.49 
<.001 

.51 
<.001 

.43 
<.001 

Correlations are  reported in plain text, with p values reported below in italics for all variables.
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Table 2.2 ROIs predicting PTSD Sum Scores in Separate Analyses 
Region of Interest β [95% CI] t(151)    p 
L Hippocampus 0 [0,0] -1.68 .095 
R Hippocampus 0 [-0.01, 0] -2.22 .028 
L Amygdala 0 [-0.01, 0] -0.28 .744 
R Amygdala 0 [-0.01, 0] -0.78 .397 
L rACC -1.48 [-5.56, 2.59] -0.72 .473 
R rACC -5.52 [-9.63, -1.20] -2.54 .011* 
L cACC -1.27 [-4.95, 2.42] -0.68 .498 
R cACC -2.03 [-5.95, 1.88] -1.03 .307 
L lOFC -6.65 [-12.78, -0.41] -2.10 .037* 
R lOFC -4.79 [-10.90, 1.31] -1.55 .123 
L mOFC -6.44 [-12.59, -0.29] -2.07 .040* 
R mOFC -3.41 [-8.92, 1.96] -1.27 .221 

β = standardized beta estimates, 95% CI = 95% confidence interval, L = left, R = right, rACC = 
rostral anterior cingulate cortex, cACC = caudal anterior cingulate cortex, lOFC = lateral 
orbitofrontal cortex, mOFC = medial orbitofrontal cortex. Using data from the Vietnam Era Twin 
Study of Aging mixed effect linear regressions were performed 
 

Twin Analyses of PTSD and Specific ROIs 

 To quantify the genetic and environmental influences on PTSD and each of the 

three significantly associated brain ROIs, univariate and bivariate twin models were 

fitted.  Table 2.3 outlines the univariate models fitted to PTSD and each ROI. The first 

section of Table 2.3 shows the results of fitting of univariate twin models to the PTSD sum 

scores.  The best fitting model for PTSD was the AE model with a standardized heritability 

(a2) estimate of 0.36 (95% Confidence Intervals [95%CI]: 0.27, 0.44), and a unique 

environment estimate of 0.64 (95%CI: 0.55, 0.73).  The best fitting model for the right 

rACC model was also AE; the heritability was 0.21 (95%CI: 0.0, 0.42), and unique 

environment was 0.79 (95% CI: 0.60, 1.00).  Lastly, the best-fitting models for the left 

lOFC and mOFC were the AE models with heritabilities of 0.47 (95%CI: 0.31, 0.60) and 

0.41 (95%CI: 0.25, 0.54), respectively, and unique environment estimates of 0.53 (95%CI: 

0.39, 0.68) and 0.59 (95%CI: 0.44, 0.73), respectively.  
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Table 2.3 Model fit statistics for Univariate PTSD and ROI Twin Models 
Model Factors Δdf -2LL AIC p 

Posttraumatic Stress Disorder Sum Score  
I ACE 1159 8753.63 6435.63 - 

II AE 1 8753.69 6433.69 .822 
III CE 1 8760.16 6440.16 .010 
IV E 2 8803.09 6481.09 <.001 

Right Rostral Anterior Cingulate Cortex  
I ACE 388 -67.25 -843.25 - 

II AE 1 -67.18 -845.18 . 693 
III CE 1 -67.10 -845.10 . 786 
IV E 2 -63.30 -843.30 . 139 

 Left Lateral Orbitofrontal Cortex  
I ACE 387 -374.25 -1148.25 - 

II AE 1 -374.23 -1150.23 .898 
III CE 1 -371.31 -1147.31 .086 
IV E 2 -346.06 -1124.06 <.001 

Left Medial Orbitofrontal Cortex  
I ACE 388 -357.87 -1133.87 - 

II AE 1 -357.85 -1135.85 .880 
III CE 1 -355.85 -1133.85 . 155 
IV E 2 -334.95 -1114.95 <.001 

-2LL = -2 log-likelihood, Δdf = change in degrees of freedom from full model (I), ΔAIC = change 
in Akaike Information Criterion from full model (I). For AIC and -2LL, smaller or more negative 
values indicate a better fit compared to the full model (Model 1). p is related to the statistical 
difference of -2LL values between full and sub models. Best fitting models are designated in bold 
text for each section of analyses. 
 

 Bivariate correlated-factors models were fitted to PTSD and each of the three 

significantly associated brain ROIs (Right rACC, Left lOFC, and Left mOFC) from the first 

aim with model results shown in Table 2.4.  Similar to the PTSD univariate model, an AE 

model fit best in all three bivariate models (right rACC, left lOFC, and left mOFC).  Figure 

2.1 shows an example of the etiological structure of PTSD and each ROI, with 

standardized variance and correlation information for each model shown in Table 2.5.  All 

three ROIs have minimal, nonsignificant genetic correlations with PTSD (0.05 to 0.10) 

and moderate unique environmental correlations (-0.25 to -0.26).  
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Table 2.4 Model Fit Statistics for Bivariate Correlated Factors Model of PTSD and 
ROIs 

Model Factors Δdf -2LL AIC p 
PTSD & Right rACC Bivariate Model 

I ACE 1544 8676.72 5586.72 - 
II AE 3 8676.96 5580.96 .971 
III CE 3 8684.64 5588.64 .047 
IV E 6 8732.68 5630.68 <.001 

PTSD & Left lOFC Bivariate Model 
I ACE 1543 8371.72 5283.72  

II AE 3 8374.74 5280.74 .387 
III CE 3 8380.03 5286.03 .039 
IV E 6 8452.81 5352.81 <.001 

PTSD & Left mOFC Bivariate Model 
I ACE 1544 8388.41 5298.41  

II AE 3 8390.43 5294.43 .567 
III CE 3 8396.32 5300.32 .042 
IV E 6 8464.32 5362.32 <.001 

-2LL = -2 log-likelihood, Δdf = change in degrees of freedom from full model (I), AIC = Akaike 
Information Criterion.  rACC= rostral anterior cingulate cortex, lOFC= lateral orbitofrontal 
cortex, mOFC= medial orbitofrontal cortex.  For AIC and -2LL, smaller or more negative values 
indicate a better fit compared to the full model (Model 1).  p is related to the statistical difference 
of -2LL values between full and sub models. Best fitting models are designated in bold text for 
each section of analyses. 
 
 

Figure 2.3 Example Bivariate Correlated Factors Model for PTSD and ROIs.  
A= Genetic Factor, C= Familial Environment Factor, E= Unique Environment 
Factor, rA = genetic correlation between PTSD and ROI,  rE = 
environmental correlation between PTSD and ROI 

rA 

ROI PTSD 

A1 
E1 E2 A2 

rE 
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Table 2.5 Standardized Variance and Correlation Estimates for Bivariate Correlated 
Factors Models between PTSD and each ROI 

Model 

Genetic Factors 
Unique 

Environment Factors 
A1 

(95%CI) 
A2 

(95%CI) 
rA 

(95%CI) 
E1  

(95%CI) 
E2  

(95%CI) 
rE 

(95%CI) 
R rACC .36 

(.27; .44) 
.19 

(.03, .38) 
.12 

(-.48, .21) 
.64 

(.55, .73) 
.80 

(.61, .98) 
-.16 

(-.26, -.04) 
L lOFC .36 

(.27, .44) 
.45 

(.28, .60) 
.05 

(-.27, .42) 
.64 

(.55, .73) 
.54 

(.41, .71) 
-.26 

(-.43, -.06) 
L 
mOFC 

.36 
(.27; .44) 

.38 
(.22, .53) 

.07 
(-.28, .51) 

.64 
(.55, .73) 

.63 
(.55, .73) 

-.25 
(-.42, -.05) 

rACC= rostral anterior cingulate cortex, lOFC= lateral orbitofrontal cortex, mOFC= medial 
orbitofrontal cortex. L = left, R = right, 95%CI = Confidence intervals. A1 and E1 factors load 
onto the PTSD sum score, A2 and E2 factors load onto the ROI listed in the Model column. rA 
and rE are the correlations between each factor.  . Each model listed is the best-fitting model 
from the corresponding sections of Table 2.2.   

 

Moderated Bivariate Twin Analyses of PTSD, Specific ROIs, and Trauma  

 To address the final aim of this chapter, a moderated bivariate correlated factors 

model was fit to the data with trauma as the moderator on PTSD and ROI variance 

components as well as on the means.  Given that there was no evidence for shared genetics 

across PTSD and the ROIs (noted by the large confidence intervals that cross zero in Table 

2.5) these covariances were constrained to zero as the models failed to converge when 

they were freely estimated.  Table 2.6 shows the fit statistics for models testing moderated 

correlated factor models for PTSD and each ROI.  The moderators on variance 

components were tested individually by adding them into the model one at a time rather 

than starting with all being freely estimated.  This is due to the fact the sample size was 

too small to provide model stability when all moderators were freely estimated in the full 

model.  Therefore, model fitting began with an environment only (E) model and built up 

to the AE model while adding moderation to a source of variance at each step as outlined 

in Table 2.6.  For the right rACC, models did not converge when incorporating moderation 
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on the genetic factors, while for the left mOFC only moderation on the genetic factor of 

the mOFC could be examined.  For the left lOFC genetic moderation of both PTSD and 

the ROI simultaneously was examined, but models did not converge when moderation on 

both genetic and environmental factors was specified.  The first section of Table 2.6 shows 

that model I, an E model with moderation on the means and the environmental factors 

fit best for PTSD and the right rACC.  The best-fitting model of the left lOFC was model 

IV, an AE model with moderation on the means and genetic factors.  Lastly, model IV, an 

AE model with moderation on the means and on the genetic variation in mOFC was the 

best-fitting model for the mOFC.  Table 2.7 shows the path estimates for the best-fitting 

moderated model for each ROI.  Figure 2.4 shows an example moderated bivariate model 

with path labels corresponding to the estimates in Table 2.7. 

 
Table 2.6 Twin Model Fit Statistics for Moderated Bivariate Correlated Factors Model 

of PTSD and ROIs 
Model Factors Moderation DF -2LL AIC 

PTSD and Right rACC 
I E E 1447 8117.94 5223.94 
II AE - 1547 8676.96 5580.96 
III AE E 1445 8164.48 5274.48 

PTSD & Left lOFC 
I E E 1447 11155.40 8261.40 
II AE - 1547 8374.74 5280.74 
III AE E 1445 10078.18 7186.17 
IV AE A 1445 7934.21 5044.21 

PTSD and Left mOFC 
I E E 1447 7888.40 4994.40 
II AE - 1547 8390.43 5294.43 
III AE E 1445 7911.042 5021.04 
IV AE AOFC 1446 7718.45 4826.45 

-2LL = -2 log-likelihood, DF = degrees of freedom, AIC = Akaike Information Criterion. rACC= 
rostral anterior cingulate cortex, lOFC= lateral orbitofrontal cortex, mOFC= medial orbitofrontal 
cortex. For AIC and -2LL, smaller or more negative values indicate a better fit compared to the 
full model (Model 1). p is related to the statistical difference of -2LL values between full and sub 
models. Best fitting models are designated in bold text for each section of analyses. 
 



	 44	

 

 
 

 
 

Table 2.7 Standardized Parameter Estimates For Each Moderated Bivariate Model 
Parameter Bivariate rACC Bivariate Left lOFC Bivariate Left mOFC 

Estimate [SE] Estimate [SE] Estimate [SE] 
APTSD - 0.03 [.08] 0.03  [0.08] 
AROI - 0.32 [.002] 0.40 [.002] 
EPTSD 1.00 [.43] 0.97 [.04] 0.97 [0.04] 
EROI 1.00 [.08] 0.68 [.002] 0.60 [.001] 
rE 0.0 [.09] 0.00 [.08] 0.00 [.08] 
β APTSD - 0.045 [.19] - 
β AROI - -0.43 [.06] .15 [.05] 
β EPTSD 0.06 [.01] - - 
β EROI 0.02 [.05] - - 

A = additive genetic factor; E = unique environmental factor; β= moderation beta estimate on 
specified variance component; PTSD = posttraumatic stress disorder, ROI = region of interest; 
SE = standard error 
 

 

 

rA

ROIPTSD

A1
E1 E2

A2

rE

βEPTSD βAPTSD βEROIβAROI

Figure 2.4 Example Moderated Bivariate Correlated Factors Model for PTSD and 
ROIs.  
A= genetic factor, E= unique environment factor, rA = genetic correlation between 
PTSD and ROI,  rE = environmental correlation between PTSD and ROI, β A = 
combat trauma moderation on genetic factor, β E = combat trauma moderation on 
unique environment factor 
β E= combat trauma moderation on Unique Environmental Factor 
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Discussion 

The overall aim of this chapter was to assess whether ROIs implicated in stress 

response meet the criteria for an endophenotype of PTSD.  This was done by examining 

the moderating role of trauma on the shared genetic and environmental structure of PTSD 

and brain regions associated with PTSD.  First, by using mixed effect linear regressions, 

it was possible to identify brain ROIs associated with PTSD sum scores from a list of 

potential brain ROIs based on the extant literature.  Next, modeling of the shared etiology 

of PTSD with each of the 3 surviving ROIs showed familial environment was not 

significant for any of the phenotypes examined.  Table 2.5 shows there was minimal to no 

genetic correlation between PTSD and ROIs, and a small but significant negative 

correlation between unique environmental influences of PTSD and each ROI.  Lastly, we 

examined whether trauma moderated the genetic or unique environmental influences on 

PTSD and ROIs. 

In the preliminary analyses of 12 potential ROIs only three were significantly 

associated with PTSD, and had non-zero standardized beta estimates.  All of the 

significantly associated ROIs had the expected direction of association: a reduction in 

cortical thicknesses as PTSD sum scores increased.  The mixed effect regressions found 

the right rACC, left lOFC, and mOFC associated with PTSD symptoms.  This is consistent 

with previous meta-analyses which found reduced grey matter volume in the right 

anterior cingulate gyrus (a sub-region of the ACC)163 and two other meta-analyses that 

found significant associations with thinner OFC regions.95,99 

For all non-moderated genetic modeling, the AE models provided the best fit, 

suggesting that both genetic and unique environmental influences, but not shared 

environmental influences contribute to the etiology of PTSD and brain morphology.  This 
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is consistent with previous studies that separately examined the etiology of PTSD28–30, 

and brain morphology170.  In the bivariate models PTSD and ROIs were found to have 

overlapping unique environmental influences, but did not share genetic influences as 

noted by the wide confidence intervals that cross zero.  Within the statistical power of this 

study, this finding eliminates ROI volume as a potential endophenotype for PTSD.  This 

is the first study to examine the potential shared etiology of PTSD symptoms and brain 

morphology and, therefore, these results represent novel findings for the field of 

neuroimaging genetics.    

Analyses for the final aim added moderation to the previous bivariate models with 

trauma as the moderator on PTSD and ROI variance components as well as on the means.  

These models tested whether trauma exposure accounted for the associations observed 

between PTSD and ROIs.  Given that there was no evidence for shared genetic factors 

across PTSD and the ROIs these covariances were constrained to zero as the models failed 

to converge when included.  The best fitting model for the ACC was an environment only 

model (E), with moderation on the means and variances.  An AE model was the best-

fitting model for both the lOFC and mOFC, with moderation on both genetic factors for 

the model including lOFC , and moderation on the ROI genetic factor only for the one 

including mOFC.   

Although there was significant genetic moderation specifically on PTSD within one 

of the bivariate models, it was substantially smaller than previous studies.180  When 

examined in a univariate model as a follow-up analysis, the moderation of trauma on the 

heritability of PTSD was -0.42 (SE = 0.80), which was still roughly half of previous 

findings.  However, at minimum it does provide support for a diathesis-stress model of 

PTSD together with the previous findings of combat exposure’s moderating role on PTSD.  
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However, the strength of this relationship is not as strong in these analyses. There are 

several potential reasons for this discrepancy such as a small sample size and timing 

difference between assessment of combat exposure and PTSD symptoms.   

The extended time between the assessments of trauma and PTSD may also further 

reduce the ability to detected significant moderation.  Although trauma recall is fairly 

accurate, even with over a decade since the exposure203, there is a known slight inflation 

in exposure reports when there is an increase in reexperiencing symptoms.  Within a 

latent class analysis of PTSD symptoms across time 4 main trajectories were identified: 

delayed-onset, improving, elevated-recovering, and stable low symptom.  All but one class 

showed either low levels or decreasing levels of symptoms for both active and veteran 

military personnel within a large sample (N = 22,080).204  This reduction in PTSD 

symptoms across time combined with potential reporting biases of combat exposure 

based on the current level of symptoms being experienced could negatively impact the 

ability of this study to obtain accurate results. 

Using an all-male sample may influence these findings as well.  Volumetric 

differences between sexes205  and their potential implications for functional differences 

may contribute, in part to the differential rate of specific symptom clusters between men 

and women with women reporting more re-experiencing, avoidance, and hyperarousal 

symptoms206. Additionally, sex steroids are involved in structural plasticity of regions 

involved in the stress response207, i.e. the hippocampus and amygdala, leading to slight 

differences in the physiological stress response between the sexes.208  Based on previous 

literature of known sex differences in symptoms, brain morphometry, and physiological 

stress response these analyses could have different results within a sample of women.     
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However, of the results obtained in this study the most interesting result of the 

moderated models is that inclusion of the combat exposure moderator completely 

removes the previous environmental correlations between PTSD and each ROI.  This 

supports the hypothesis that the correlations between PTSD and ROIs are to some degree 

accounted for by combat exposure experienced by the twins.  For the lOFC it appears that 

combat exposure decreases the heritability estimates at higher levels of combat exposure.  

For the mOFC, combat exposure increases the heritability of the mOFC at higher levels of 

combat exposure.   

Although close in proximity, the lateral and medial sub-regions of the OFC are 

cyto-architecturally distinct, displaying different connectivity patterns209–217, and there is 

support for divergent functions in learning and decision-making tasks218 between them.  

However, their functionality has not been unequivocally established in humans or other 

animal models.  In a meta-analysis of connectivity modeling, the lOFC showed co-

activation with other regions in the PFC involved in cognitive functions and memory.  It 

is possible that in addition to being one of the regions with higher heritability219,220, the 

mOFC is also more sensitive to trauma exposure.  Given the greater degree of genetic 

influence and the relationship with learning and memory, individuals who were 

genetically vulnerable to trauma exposure would be more sensitive to the pathological 

effects of trauma.  For the mOFC this would likely manifest as impairments in and failure 

to re-establish fear regulation221 and lead to PTSD-like symptoms.   

This chapter is unable to directly test mechanisms by which combat exposure 

modifies the strength of genetic and environmental liabilities for PTSD.  However, 

epigenetics is one possible mechanism222 by which environmental factors could affect 

genetic influences on a trait (i.e. GxE) and has been previously implicated in PTSD.223,224 
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Potentially, combat exposure could function through epigenetic mechanisms to cause 

gene expression changes that affect neuroprocesses, which then lead to atrophy of cortical 

thickness in areas involved in the processing of traumatic events (i.e. the ROIs examined 

in this chapter) and ultimately lead to the development of PTSD.  If this were to happen, 

PTSD and ROIs would appear to be environmentally correlated, however once trauma 

exposure (and indirectly its effect on epigenetic mechanisms) is accounted for, the 

correlation would disappear.  Further research involving thorough phenotyping of trauma 

type and timing, as well as epigenetics and neuroimaging is necessary to further test this 

possible explanation of these results.  

These findings should be interpreted in the context of several potential limitations.  

First, this sample contained only male middle-aged participants, so the results may not 

generalize to women, or younger populations.  Second, all MRI data were obtained at two 

sites.  This was accounted for in analyses by regressing out any contributions related to 

site of scan, but this does not include possible random effects of site (the number of sites 

is too few for this type of correction).  It should also be noted that each twin was scanned 

at the same site as their co-twin, and there were equal mixes of MZ and DZ twin pairs 

scanned at each site.  Additionally, participants were assessed for PTSD symptom severity 

and combat exposure levels at separate time points, approximately 50 and 30 years after 

service in the Vietnam War.  Although the PTSD items assessed symptomatology in the 

past 30 days, the delay between combat exposure and its measurement for this study does 

raise questions about recall bias in participant self-report measures of combat exposure.  

Lastly, although overall VETSA has a relatively large twin sample, PTSD is not as common 

as other psychopathology27, therefore this study has reduced power to detect significant 

findings in ROI-based analyses of PTSD compared to other psychiatric disorders.  
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However, this is a common issue for samples that are not explicitly enriched for 

phenotypes.  This issue became especially apparent when fitting the last series of models 

containing moderation, as the larger models with more parameters did not converge.  

Therefore the results from the final aim should be interpreted with the understanding 

that they are most likely underpowered.  Larger consortia-based analyses, such as those 

associated with the enhancing neuroimaging genetics through meta analyses (ENIMGA) 

consortium may be better suited to obtained more precise estimates of shared etiology. 
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Chapter 3: The Genetic and Environmental Structure of Fear and Anxiety in 
Juvenile Twins 

 
 

Fear and anxiety are adaptive responses to acute or potential threat, 

respectively.153  When symptoms become dysregulated, excessive, or interfere with 

functioning and quality of life, fear and anxiety symptoms are considered clinical phobias 

or other anxiety disorders, respectively.1  As disorders of threat response with some 

shared features, psychiatric nosology traditionally includes phobias, generalized anxiety, 

and panic within the anxiety disorder domain.  Both domains have roots in childhood but 

commonly expand and persist into adolescence and adulthood, accounting for a 

substantial proportion of lifetime psychiatric illness.6  However, due to their individually 

broad but partially distinguishable features and complex unfolding across development, 

researchers have often separately investigated various aspects of their symptomatology at 

different ages. 

Fear represents the emotional-behavioral response to the perception of immediate 

danger, leading one to avoid the threat for discernible survival value.108  Fears and 

phobias are highly comorbid123, and twin studies suggest this may be explained, in part, 

by overlapping genetic and environmental influences120,225.  One twin study investigating 

the comorbidity structure of fear symptoms in children reported a common genetic factor 

that influenced all clusters in addition to fear-specific factors.124
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Anxiety disorders (ADs) often have a basis in normal anxious concerns; however, 

the degree of anxiety and associated symptoms may become excessive, uncontrollable, 

and impairing to an individual’s life.  ADs are highly comorbid with each other, and adult 

twin studies suggest that this comorbidity may be due, in part, to genetic risk factors 

shared between disorders.149,150  This comorbidity pattern is also seen in children, where 

40% to 60% of children with one AD are estimated to meet criteria for additional 

ADs.151,152  

In a non-twin study, Muris and colleagues226 report substantial correlations 

between subscales of the Fear Survey Schedule for Children-Revised (FSSC-R)114 and the 

Screen for Child Anxiety-Related Emotional Disorders (SCARED).143  However, only a few 

studies of children have examined the liability structure of DSM-based anxiety 

dimensions146 or phobic fear symptoms.119,124  No child twin studies have explored the 

potential sources of shared etiology of these two threat response domains.  Given the 

partial distinction between risk factors for phobias and other ADs in adults, it is important 

to examine their childhood precursors.  Furthermore, early fear and anxiety disorders are 

the strongest predictors of later psychiatric comorbidity.173  Therefore, this chapter aims 

to explicate the shared and specific risk factors (genetic, familial environment and unique 

environment) and their roles amongst fear and anxiety domains in youth.  Due to the 

moderate level of correlation between the FSSC-R and SCARED subscales described 

above, partial overlap between genetic and environmental factors across these scales is 

predicted.  By leveraging symptom sum scores rather than diagnostic criteria, the 

statistical power to detect meaningful patterns of shared and specific variance is likely to 

be increased.  
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Methods 

Participants 

The twins included in these analyses comprised the VCU Juvenile Anxiety Study 

(VCU-JAS).227  Using twin families recruited by the Mid-Atlantic Twin Registry228, VCU-

JAS enrolled twins aged 9-14 across two sites (VCU and the National Institute of Mental 

Health; NIMH) to participate in a study of internalizing phenotypes.  Only Caucasian 

twins were recruited to minimize heterogeneity within the sample for the genetic aims of 

the overall study.  The Institutional Review Boards at VCU and NIMH approved this 

study, and parents of all participants provided informed consent before participating.  

Self-report data available for this study came from 746 youths (N=130 monozygotic (MZ) 

twin pairs and N=243 dizygotic (DZ) twin pairs) consisting of 388 female and 358 male 

twins.  Zygosity was determined using parental responses to standard questions about 

physical appearance of the twins and DNA testing as described in detail elsewhere.227 

 

Measures 

Fear   

The FSSC-R114 is a widely used questionnaire for assessing common fears in 

children.112,118,229  It uses a 3-point Likert scale (1=‘none’, 2=‘some’, 3=‘a lot’) for each of 

80 feared stimuli or situations.  The shortened 25-item form (FSSC-RSF) has a 5-factor 

structure similar to the full scale230, and a confirmatory factor analysis (CFA) using Mplus 

version 7.4231 demonstrated an adequate fit for our data (CFI= .88, RMSEA= .06) 

consistent with previous literature.  The five subscales included fear of failure and 

criticism (CRIT), fear of the unknown (UNKN), fear of animals (ANML), fear of danger 
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and death (DEATH), and medical fears (MED).  A sum score was calculated for all 

subscales with the following means (standard deviations): CRIT 8.51 (2.43), UNKN 7.68 

(2.38), ANML 7.28 (2.02), DEATH 12.96 (3.41), and MED 6.85 (2.06).  Figure 3.1 shows 

histograms for each subscale and the total scale, with the mean of each denoted by a blue 

line.  Prior studies have found the FSSC-RSF has good internal consistency, total score 

Cronbach’s alpha=0.91, and subscale alpha=0.74-0.82230, with full-scale alpha=0.96 and 

two-week test-retest reliability=0.78 found in our sample227. 

 

Anxiety   

The SCARED was developed to screen for ADs within clinical samples142,143 but has 

also been widely used in community and research studies.144,145  It assesses five clusters 

of childhood anxiety symptoms: panic/somatic [PAN], generalized anxiety [GAD], social 

anxiety [SOC] and separation anxiety [SEP] as well as school avoidance.  The 41-item 

version142 assesses symptoms on a 3-point Likert scale. (0=‘almost never’, 1=‘sometimes’, 

Figure 3.1 Histograms FSSC-RSF Subscales and Total Sum Score Counts 
Sum scores for each subscale and total sum score are shown with blue line indicating the mean 
of the subscale. 
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2=‘often’).  As intended, the factor structure for the scale yielded five subscales: PAN, 

GAD, SEP, SOC, and School Avoidance.  Since School Avoidance is not related to a specific 

DSM-IV disorder, we did not use it for our analyses.  A CFA excluding the school 

avoidance items showed a four-factor model fit our data adequately (CFI=.92, 

RMSEA=.04) consistent with previous literature.232  A sum score was calculated for each 

of the four DSM-related subscales with the following means (standard deviations) in 

VCU-JAS: PAN 5.17 (3.86), GAD 5.94 (3.69), SEP 5.20 (3.42), and SOC 6.00 (3.29); for 

more information see.227 Figure 3.2 shows histograms for each subscale and the total 

scale, with the mean of each denoted by a blue line.  Previous studies found a high degree 

of internal consistency of the SCARED (Cronbach’s alpha=0.74-0.93) and good test-retest 

reliability (intraclass correlation coefficients=0.70-0.90).142,143  Our sample found a 

similar full-scale Cronbach’s alpha=0.90 and two week test-retest reliability=0.89.  
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Figure 3.2 Histograms SCARED Subscales and Total Sum Score Counts 
Sum scores for each subscale and total sum score are shown with blue line indicating the mean 
of the subscale. 
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 Statistical analyses 
Analyzing the similarity of MZ and DZ twins can elucidate the roles of additive 

genetic (A), familial environmental (C), and unique environmental (E) effects.  Variance 

is partitioned into underlying genetic and environmental influences by leveraging the 

difference in genetic relatedness between twin types.  Additive genetics (A) reflects the 

latent cumulative effects of individual genetic loci influencing a trait.  Familial 

environment (C) captures non-genetic influences that make twins more similar to each 

other compared to the general population.  Unique environment (E) describes influences 

that contribute to the differences seen between co-twins, including measurement error.  

Models were fitted by full information maximum-likelihood (FIML) using the OpenMx 

package.199  

In multivariate structural equation modeling, ACE components can be specific to 

each subscale (e.g., As1 in Figure 3.3) or common to multiple subscales (e.g., Ac1).  Age 

and sex have a substantial effect on fear and anxiety measures and were included as fixed-

effect covariates for all phenotypic means.  Due to sample size we do not have the power 

to examine sex effects on variances, however inclusion of age and sex as covariates on the 

means is a step towards reducing the heterogeneity introduced by these covariates.  

Significance of individual parameters was tested by comparing the fit of a model to that 

of a constrained submodel.  Likelihood ratio χ2 tests are used to determine if the 

constrained model fits the data significantly worse than the saturated model.  AIC is based 

on twice the difference in log-likelihood between higher order and submodels with a 

penalty for degrees of freedom, with lower AIC denoting a better balance of model fit and 

parsimony.202 
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An increasingly complex series of hypothetical models were fit to the data. 

Multivariate independent pathway models (IPMs), and common pathway models (CPMs) 

were estimated separately for each scale to estimate their sources of variance and 

covariance.  Second, we tested whether the common ACE factors for the best-fitting FSSC-

RSF were correlated with those of the SCARED via a correlated factors model (CFM).  

Non-zero correlations provide evidence for shared etiology across fear and anxiety 

domains in children.  The final model, a combined IPM covering both sets of symptom 

clusters, provided a more nuanced representation of the covariance structure beyond the 

factor correlations in the CFM.  We tested the need for multiple sets of common ACE 

sources of covariance to explain the observed data.  

 

Results 
Fear 

The Fear sections of Table 3.1 displays the fit statistics for the independent and 

common pathway models of the FSSC-RSF.  To test for genetic and environmental factors 

common to all subscales, we began with a model including single common A, C, and E 

factors plus specific ACE factors with age and sex covariates for each subscale mean.  

Significance of common and then specific factors were sequentially tested by iteratively 

constraining parameters to zero.  Common pathway models consisting of 1-, 2-, and 3-

factors were fit to the data as well.  As indicated in Table 3.1, Model 1b was determined to 

be the best fitting and most parsimonious model.  It included a single set of common ACE 

factors and subscale specific A and E factors.  Females had the expected pattern of higher 

mean subscale scores compared to males across all subscales, depicted in Figure 3.3 as 

paths from the sex moderator (lower right circle) loading on each subscale.  A slight 
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decrease in means as age increases for all scales except for criticism is consistent with 

decreases in childhood fears over development.  The influence of common and specific 

genetic factors accounted for 10-34% of the total of variance of each subscale with the 

remaining variance accounted for primarily by subscale specific, unique environmental 

factors.  As a follow up to the two-factor common pathway model, which fit almost as well 

as Model 1b in Table 2.1 of the independent pathway series, a series of independent 

pathway models were fit to the data with two sets of common ACE factors.  However, they 

were unable to converge on a final solution.  As such analyses moved forward with the 

best-fitting model containing a single set of ACE factors. 

  

Anxiety 

The Anxiety sections of Table 3.1 displays the fit statistics for the independent and 

common pathway models of the SCARED.  Similar to fear, we found model 1b of the 

independent models fit best with single set of common ACE factors and subscale specific 

A and E.  Age and sex influenced the means of each subscale in a similar pattern to fear.  

GAD was the exception for which the opposite age trend was found, consistent with 

clinically observed increased risk of GAD with age.  The total influence of all genetic 

factors accounted for 18-35% of each subscale’s variance with remaining variance 

accounted for primarily by subscale specific unique environmental factors.  The genetic 

factor common to all subscales accounted for 5-19% of the variance for PAN, GAD and 

SEP.  Only SOC did not share genetic influences with the other symptom clusters.  Figure 

3.4 depicts the path estimates from the best fitting model for the SCARED.  
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Table 3.1 Model-Fitting Results for Multivariate Independent Pathway Models of Fear 
and Anxiety 

Fear Independent Pathway Models 

Model 
Common 
Factors 

Specific 
Factors EP 

 
df/Δ 

Model Fit  
-2LL AIC P 

1 A1C1E1 All ACE 45 3612 15553.6 8349.6 - 
1a A1C1E1 All AE 40 5 15553.6 8339.6 .999 
1b A1C1E1 All CE 40 5  15558.6 8344.6 .413 
1c A1C1E1 All E 35 10 15569.2 8345.2 .110 
2 C1E1 All ACE 40 5 15569.7 8355.7 .000 
3 A1E1 All ACE 40 5 15560.8 8346.8 .204 
4 A1C1 All ACE 40 5 15714.8 8500.8 .000 
5 - All ACE 30 15 16455.7 9221.7 .000 

Fear Common Pathway Models 
6 1 Factors All ACE 38 3609 15572.5 8354.5 - 
7 2 Factors All ACE 46 3601 15552.8 8350.8 - 
8 3 Factors All ACE 54 3593 15538.6 8352.6 - 

Anxiety Independent Pathway Models 
1 A1C1E1  All ACE 36 2900 14824.0 9024.0 - 
1a A1C1E1 All AE 32 4 14824.0 9016.0 .999 
1b A1C1E1 All CE 32 4 14837.6 9029.7 .008 
1c A1C1E1 All E 28 8 14852.6 9036.7 .000 
2 C1E1 All ACE 32 4    14833.4 9025.4 .005 
3 A1E1 All ACE 32 4    14836.1 9028.1 .001 
4 A1C1 All ACE 32 4 14951.4 9143.4 .000 
5 - All ACE 24 12 15544.1 9720.1 .000 

Anxiety Common Pathway Models 
6 1 Factors All ACE 31 2905 14836.7 9024.7 - 
7 2 Factors All ACE 38 2898 14827.1 9031.1 - 
8 3 Factors All ACE 45 2891 14823.0 9041.0 - 

Abbreviations: EP=estimated parameters, df /Δ= degrees of freedom for model and change in 
degrees of freedom for submodels, -2LL = twice the negative log likelihood of model, AIC = 
Akaike information criterion of model. For AIC and -2LL, smaller values indicate a better fit 
compared to the full model (Model 1). p is related to the statistical difference of -2LL values 
between full and sub models. Bold designates the overall best fitting model.  
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Figure 3.3 Best-Fitting Model for Fear Subscales 
The model contains 1 common additive genetic factor (Ac1), 1 common familial environmental 
factor (Cc1), and 1 common unique environmental factor (Ec1).  Only subscale specific additive 
genetic, and unique environmental factors were found to be significant, and thus retained in 
the final model. Path coefficients representing standardized estimates are listed above 95% 
confidence intervals for each path for fear of failure and criticism (CRIT) fear of the unknown 
(UNKN), fear of animals (ANML), fear of danger and death (DEATH), and medical fears 
(MED).  Triangles in the middle figure denote age and sex moderators on the means for all 
subscales, with 95% CIs listed below the standardized path estimate.  Triangle (µ) represents 
the means [S.D.] of the four subscales in addition to loading onto the covariates age and sex 
[95% CI]  
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Figure 3.4 Best-Fitting Model for Anxiety Subscales 
The model contains 1 common additive genetic factor (Ac1), 1 common familial 
environmental factor (Cc1), and 1 common unique environmental factor (Ec1).  Only 
subscale specific additive genetic, and unique environmental factors were found to be 
significant, and thus retained in the final model. Path coefficients representing 
standardized estimates are listed above the 95% confidence intervals (CIs) for each path 
for panic disorder (PAN), generalized anxiety disorder (GAD), social phobia (SOC) and 
separation anxiety (SEP). Triangle (µ) represents the means [SD] of the four subscales in 
addition to loading onto the covariates age and sex [95% CI] 
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Modeling Across Fear and Anxiety 

 Correlated Common Factors Model  

We used the best fitting individual IPMs of Fear and Anxiety to examine the 

overlap in their etiology via correlations between the two sets of common ACE factors.  

Each subscale retained specific ACE factors to capture residual variance not otherwise 

accounted for by common factors.  Model 1 in Table 2 freely estimated all correlations, 

and submodels tested significance of each correlation by constraining to 1 (fully shared) 

or 0 (no sharing) and comparing fit to the full model.  Model 12 had a slightly better fit to 

these data, with the correlation between common familial environment factors and the 

correlation between common genetic factors constrained to 1 plus a common unique 

environmental factor correlation estimated at r=0.67. Consistent with the single scale 

models, it included significant age and sex effects on the means.  Statistically stable 

specific influences on the subscales and highly correlated influences common to all fear 

and anxiety clusters motivates a more detailed examination of the risk structure via the 

combined independent pathway model.  
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Table 3.2 Model-Fitting Results for Correlated Common Factor IPM of Fear and Anxiety 

Model 
Fixed 

Correlations EP df/Δ 
Model Fit 

 

-2LL AIC    P 
1 - 84 6499 30065.0 17067.0 - 
2 rA, rC, rE = 0 65 3 30377.6 17373.6 < .001 
3 rA, rC, rE = 1 65 3 30109.6 17105.6 < .001 
4 rA = 1 83 1 30047.6 17047.6 .999 
5 rA = 0 83 1 30049.7 17049.7 .999 
6 rC= 1 83 1 30038.0 17038.0 .999 
7 rC= 0 83 1 30044.4 17044.4 .999 
8 rE= 1 83 1 30097.5 17097.5 < .001 
9 rE=0  83 1 30087.4 17087.4 < .001 
10 rA=1 rC=0 82 2 30045.4 17043.4 .999 
11 rA=0 rC=1 82 2 30052.3 17050.3 .999 
12 rA=1 rC=1 82 2 30038.6 17036.6 .999 
13 rA=0 rC=0 82 2 30096.9 17039.1 < .001 

 
Table 2 shows the fit statistics for all models tested. Model 1 is the full model with all 
three latent correlations freely estimated.   To test the significance of correlations 
subsequent models constrained the correlations to 1 and 0. Table abbreviations: IPM 
= Independent Pathway Models, rA= correlation between common latent genetic 
factors, rC= correlation between common latent familial environmental factors, rE= 
correlation between common latent unique environmental factors. Bold designates the 
overall best fitting model. 

 

 

Combined Independent Pathway Model 

To examine which subscales were driving the correlations between latent factors 

and explore a larger set of possible risk structures among fear and anxiety, we examined 

an IPM with two sets of latent common ACE factors.  To ensure model identification and 

a unique solution, for each set of ACE common factors, we dropped one variable to 

designate one set as the ‘anxiety’ set and the other as the ‘fear’ set. I.e., all SCARED 

subscales load on the ‘anxiety’ ACE factors and all subscales except criticism from FSSC-

RSF do so as well, and the reverse with all FSSC-RSF and all SCARED except GAD loading 

onto the ‘fear’ ACE set (as seen in Figure 3.5 in the C and E factor loading illustrations).  

When testing a single common factor model (i.e., Ac1, but no Ac2), we allowed all subscales 
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to load onto that single factor.  In a test similar to fixing correlations to one in the 

correlated common factors model, we successively dropped one of the common genetic 

factors (Ac) then one each of the common environmental factors (Cc and Ec) to find the 

most parsimonious model.  While one of the two latent Ac factors could be eliminated 

without a significant deterioration in fit, we were unable to remove any of the four 

common environmental factors (i.e., keeping two each for Cc and Ec).  The best fitting 

was Model 3b in Table 3 with similar effects of age and sex as before.  

 
 
 

Table 3.3 Model Fitting Results for Independent Pathway Model Including All 
Symptom Clusters 

Model 
Common 
Factors 

Specific 
Factors EP df/ Δ 

Model Fit  
-2LL AIC P 

1 A1A2C1C2E1E2 All ACE 102 6481 30146.6 17184.6 - 
2 A1A2C1E1E2 All ACE 95 7 30051.4 17085.4   .999 
3 A1C1C2E1E2 All ACE 95 7 30024.8 17048.8   .999 
3a A1C1C2E1E2 All CE 86 16 30040.1 17046.1   .032 
3b A1C1C2E1E2 All AE 86 16 30024.8 17030.8   .999 
3c A1C1C2E1E2 All E 77 25 30069.0 17057.0 < .001 
4* A1A2C1C2E1 All ACE 95 7 - - - 
5 A1C1E1 All ACE 81 21 30105.4 17101.4   .999 
6 C1E1 All ACE 72 30 30196.9 17202.9   .014 
7 A1E1 All ACE 72 30 30170.8 17148.8   .762 
8 A1C1 All ACE 72 30 30381.5 17359.5 < .001 
9 - All ACE 54 48 31999.8 18941.8 < .001 

 
Table 3 shows the fit statistics for all models tested.  Common Factors are the ACE latent 
factors shared between all observed variables. Specific Factors are the nine sets of ACE latent 
factors that each only load onto one observed variable, respectively.  Specific factors were 
tested by dropping a class at a time (e.g., all specific A latent factors dropped at same time). 
Bold designates the overall best fitting model. 

* Model 4 was unable to converge to a final solution 
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The proportion of variance in liability accounted for by each source of variance is 

listed in Table 4.  Figure 3.5 illustrates the larger role of shared genetic influences on the 

anxiety subscales, with limited influence of familial environment common to all subscales 

and the largest proportion of unique environmental influences originating from subscale 

specific factors.  This partitioning is reflected in Table 4 where the total genetic influences 

across shared and specific components account for 15-40% of the variance, whereas the 

total variance accounted for by common and specific familial environment is markedly 

lower (0-17%); the remainder was accounted for by some common but predominantly 

specific unique environment (47-74%). 

 
 
 
 

Table 3.4 Proportion of Variance in Liability to Anxiety and Fear Symptom Clusters 
from Common and Specific Genetic and Environmental Risk Factors* 

Symptom 
Cluster 

Genetic Factors 
Familial 

Environmental Factors 
Unique  

Environmental Factors 
Ac As Total Cc1 Cc2 Total Ec1 Ec2 Es Total 

PAN .28 .12 .40 .03 .02 .05 .16 .00 .39 .55 
GAD .50 .03 .53 .00 - .00 .12 - .35 .47 
SEP .21 .12 .33 .02 .10 .12 .21 .04 .30 .55 
SOC .14 .26 .40 .02 .00 .02 .18 .02 .38 .58 
CRIT .37 .00 .37 - .00 .00 - .19 .44 .63 
UNKN .14 .00 .14 .02 .15 .17 .04 .27 .38 .69 
ANML .03 .18 .21 .06 .01 .07 .00 .18 .54 .72 
DEATH .14 .02 .16 .10 .00 .10 .00 .15 .59 .74 
MED .15 .04 .19 .15 .00 .15 .00 .26 .30 .66 

 
Table 4. Panic disorder (PAN), generalized anxiety disorder (GAD), social phobia (SOC) and 
separation anxiety (SEP), fear of failure and criticism (CRIT), fear of the unknown (UNKN), fear 
of animals (ANML), fear of danger and death (DEATH), and medical fears (MED), Ac (Common 
A factor), As (Specific A factor), Cc1 (First Common C factor) Cc2 (Second Common C factor), Ec1 
(First Common E factor), Ec2 (Second Common E factor) Es (Specific E factor). Bolded columns 
designate proportion of total variance accounted for by the combined common and specific 
etiological sources of variance for each subscale.  
*Best-fitting IPM model 3b from Table 3 
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PAN 

Es1 

GAD 

Es2 

SEP 

Es3 

SOC 

Es4 
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Es6 
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DEATH PAN GAD SEP SOC UNKN ANML CRIT MED 
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As1 As2 As3 As4 As6 As7 As5 As8 As9 

PAN GAD SEP SOC UNKN ANML CRIT DEATH MED 

Ac1 

Figure 3.5 Best-Fitting Model for Fear and Anxiety Symptom Clusters 
The model contains one common additive genetic factor (Ac1), two common 
familial environmental factors (Cc1 and Cc2), and two common unique 
environmental factors (Ec1 and Ec2).  Only disorder specific additive genetic and 
unique environmental factors were found to be significant and retained in the 
final model.  The darker lines indicate a stronger influence of the latent factor on 
the observed variable. Lighter lines indicate a standardized path estimate less 
than 0.10. Table 3 provides the proportion of variance accounted for by each of 
these pathways. 
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Discussion 

We used multivariate SEM to examine the structure of genetic and environmental 

risk factors that underlie the associations between fear and anxiety symptoms in a 

juvenile twin sample.  We first separately examined each scale’s genetic and 

environmental factors.  Fear and anxiety each respectively displayed an overall similar 

etiologic covariance structure that included moderate influences of genetic plus familial 

and unique environmental factors common to all clusters (Figure 3.5).  The remaining 

influences were due to outcome-specific genetic and unique environmental effects.  Prior 

childhood studies have primarily focused on the etiology of particular fears119 and their 

longitudinal changes over development124 or the etiology shared between fears or 

phobias.126  Whether measuring diagnoses or symptom counts, extant studies reported 

moderate genetic influences that were partially shared with other fears or phobias plus a 

predominance of unique environmental influences.  Our findings of significant fear-

specific genetic and unique environmental effects, but little to no familial environmental 

influences, replicate those of prior studies examining these domains 

independently.125,126,233,234 

Within AD symptom domains, a latent genetic factor Ac accounted for a modest 

proportion of variance shared by all anxiety subscales except SOC.  This is generally 

consistent with the findings of Ogliari and colleagues.235  Differences between these two 

studies are largely accounted for by our finding of an additional common familial factor 

Cc, with modest influence on the covariance of subfactors that the other study did not 

include in their final models. Overall, our findings of significant moderate genetic and 

unique environmental influences are similar to previous independent studies of SOC, 

SEP, and PAN in children.125,147,233  
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Considering previous twin research that examined fear and anxiety separately in 

children, our study provides novel insights into the potential etiological underpinnings 

responsible for the high comorbidity and relatively parallel developmental sequence 

observed between phobic fear and anxiety domains in youth.  The correlated common 

factors model yielded a structure consistent with very highly correlated common A and C 

factors plus moderately correlated common E factors across symptom domains.  The 

combined IPM, with its greater flexibility in determining overall risk structure compared 

to the correlated common factors model, then allowed a more detailed representation of 

the covariance structure to emerge.  

Within the combined IPM (Figure 3.5), risk across domains was variably 

influenced by a single genetic factor (Ac) in addition to domain-specific familial 

environment (Cc1 and Cc2), plus those unique to each individual (Ec1 and Ec2).  The 

proportion of variance accounted for by Ac is lower for fear symptoms (3-37%) than for 

anxiety symptoms (14-50%).  Only Ac accounts for greater than 30% of the variance for 

any of the clusters affecting both fear of criticism and GAD, the most genetically 

influenced of each domain (37% and 50% heritability, respectively).  

While our best fitting model included multiple C and E factors, they only partially 

distinguished between fear and anxiety clusters.  Familial environment was not strongly 

influential, and the pattern that emerged was not simply fear versus anxiety.  As Figure 

3.5 shows, C1 has a modest degree of cross-loading on anxiety symptoms and fear of death 

and medical fears, although the influence on anxiety symptoms is minimal.  Only SEP and 

fear of the unknown load onto C2 with the remaining items receiving little to no influence.  

This suggests an underlying relationship between responses to seemingly distinct threats 

such as separation anxiety and fear of the unknown.  However, both tap into related 
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constructs of basic survival threat: the former due to separation from a source of safety 

(caregiver) and the latter of facing unknown situations that nonspecifically threaten basic 

survival without a caregiver’s protection.  Notably, familial environment plays little role 

in the comorbidities of internalizing disorders in adults.236 

The only common factors to show an arguable distinction between the domains 

were the unique environmental influences.  Figure 3.5 shows all the anxiety symptoms 

clustering together on Ec1 and all the fear symptoms on Ec2 with minimal cross loadings 

from the other domain (represented by dashed lines in the figure).  Since fear and anxiety 

are differential responses to acute versus potential threat, their overall environmental 

influences are likely to separately cluster.  Fear is a more primitive, instinctive defensive 

reaction primarily involving the amygdala and its recruitment of other subcortical regions 

that develop early, while anxiety requires more complex responses dependent upon 

cortical involvement which reaches maturity later than subcortical regions.237  In the 

context of brain development these environmental influences may be more a reflection of 

a child’s current ability to respond to a fear cue, whereas anxiety would require brain 

regions that are not yet developed, thus a potentially biologically mediated process 

appears as separate environmental influences.  Furthermore, given that normative fears 

are variably expressed within certain developmental windows (fear of strangers, 

separation, the dark, animals, etc.), it is more likely for their environmental influences to 

cluster according to exposures by age that make them more highly correlated with each 

other than with environmental influences on anxiety symptoms.  That is, while 

predisposing genetic influences of fear and anxiety largely overlap, their environmental 

influences may be differentially moderated by age and neurodevelopmental stage. 
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Our results further suggest that the etiological structures of fear and anxiety in 

children are not as clearly differentiated as in adults.  Prior adult twin studies report 

substantial continuity of etiological influences among fears and their corresponding 

phobias.121  Furthermore, both adult phenotypic238 and twin149 studies find correlated but 

partially distinct structural relationships between phobias and other anxiety disorders.  

Thus, while our finding of moderate levels of genetic influences common to all symptom 

clusters is not unexpected, the degree of sharing seen here is notable.  This reflects, and 

likely helps explain, clinical observations in which children are substantially more likely 

to have a complex, changing pattern of syndromes compared to adults.6,141,151,152   

The results of this analysis should be interpreted within the context of several 

limitations.  While we were able to control for fixed effects of age and sex in the analyses, 

this sample does not possess sufficient power to examine their detailed influences on the 

latent genetic and environmental factors.239  However, previous studies have indicated 

conflicting results regarding age and sex having a moderating effect on the variance of 

fear and anxiety measures124,146,147; thus, we covaried for them at the means level to 

minimize these biases.  Second, although it might limit generalizability to clinical 

samples, a dimensional approach that reflects symptom measures increases the statistical 

power to detect the influences of etiologic significance over use of categorical diagnoses.  

Generalizability is also limited due to the exclusive use of Caucasian twin pairs driven by 

the aim to minimize genetic heterogeneity introduced when sampling from multiple 

ethnicities.  Most prior twin studies were also conducted in Caucasian twins, maximizing 

our comparability with them.  

 The findings of this analysis have implications for investigating the risk 

mechanisms underlying fear and anxiety symptoms in childhood and beyond.  From a 
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trans-diagnostic perspective, these findings help explain and potentially validate the high 

rates of comorbidity among internalizing disorders in children.  Longitudinal research in 

developmental psychopathology would benefit from incorporating both threat response 

domains, given their close links in childhood.  Studies in adults show a clearer distinction 

between the two domains and their sources of covariation, while their expression in 

children is more diffuse and malleable.  From an etiological perspective this could be due 

to the greater degree of shared genetic influences expressed during child development 

coupled with developmentally specific environmental influences that help disentangle 

fear and anxiety.  A longitudinal study extending into late adolescence would further 

inform the temporal unfolding of fear and anxiety risk factors as they merge into those 

seen in adulthood.  

 



	 72	

Chapter 4: Shared Etiology of Fear and Anxiety with Brain Morphometry 
 

 
As discussed more thoroughly in chapters 1 and 3, fear and anxiety are adaptive 

responses to threat; with fear being focused on more imminent danger that is linked to a 

drive to survive, whereas anxiety is primarily focused on potential or long-term threats.237 

Both threat responses have their basis in deep-seated motivations of continued survival.  

However, misplaced, excessive, and unwarranted fear and anxiety can be maladaptive, 

and clinically recognized as phobias and panic or generalized anxiety disorder (GAD).  

This chapter considers the neurobiology of these fundamental threat responses and their 

potential shared etiologies with fear-network related brain regions. 

Many animal model research studies have focused on Pavlovian fear conditioning 

and extinction as testable, although simplistic, processes relevant to anxiety-related 

disorders such as phobias, and posttraumatic stress disorder.  This translational model 

has provided insights into the importance of the amygdala, hippocampus, anterior 

cingulate cortex (ACC), and areas of the prefrontal cortex (PFC) in fear conditioning and 

extinction.240  In humans, activation of these areas is also associated with tasks directly 

investigating fear conditioning/extinction.10  Additionally, differences in 

morphometry132,133 and functional activation18,23,128–131 of these areas have been 

associated with phobias and other anxiety disorders, primarily in adults.  The current 

neurocircuitry-based understanding of many anxiety disorders such as GAD, panic, and
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 posttraumatic stress disorder largely concerns over-activation and recruitment of the 

‘fear network’ including the amygdala, hippocampus, and some brainstem structures, 

with more recruitment of cortical areas such as the ACC, and ventromedial PFC (vmPFC), 

compared to activation patterns of phobias.  The latter two areas are associated with 

anxiety disorders more focused on worry and other cognitive processes such as 

generalized anxiety and social anxiety.  Within the functional neuroimaging literature 

there appears to be a general consensus that amygdala activation is exaggerated in 

response to a variety of disorder-specific stimuli across many anxiety disorders such as 

panic disorder156,157, social phobia13–16, generalized anxiety22,158,159, and posttraumatic 

stress disorder.11,12 

Published studies on structural brain differences between anxiety patients and 

controls in adults are limited, and those of children more so.  The latter are limited both 

in number of studies and sample sizes, with most studies having 50 or fewer participants.  

In three studies smaller hippocampal volumes were associated with childhood anxiety 

disorders241 or symptoms242,243, whereas others found no significant differences.155,244–246 

There are similarly conflicting findings for associations with amygdala volume.  Some 

studies report larger155,247 volumes associated with pediatric anxiety disorders, others 

smaller241,245,248, and yet others finding no significant association.244,246 When 

investigating areas of the prefrontal cortex, four studies reported smaller cortical 

thicknesses (vmPFC/medial orbitofrontal cortex [mOFC]) among children with anxiety 

disorders243,246–248, while another study found greater vmPFC thickness associated with 

generalized anxiety.249  While these areas were originally identified for their involvement 

in fear conditioning and emotional regulation, structural neuroimaging studies have had 

limited success in finding associations between structural differences (i.e. thinner cortical 
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thickness, or smaller volumes) in these regions and childhood anxiety disorders.  Two of 

the more recent studies used continuous measures of anxiety symptom severity with 

varying degrees of success242,243, but most of the neuroimaging literature continues to use 

case/control analytic approaches.  

The aim of the present chapter is to test for an endophenotypic relationship 

between brain regions of interest (ROIs) previously implicated in fear processing and 

anxiety.  This is accomplished by examining whether the ROIs are significantly associated 

with a genetic factor score indexing fear and anxiety measures in this sample.  While a 

whole brain voxel-wise approach would be ideal, this chapter uses pilot imaging data from 

a child anxiety study.  In order to maximize its statistical power and limit the number of 

statistical tests, a small number of preselected brain regions were analyzed.  As such this 

chapter focuses on the hippocampus, amygdala, ACC, lOFC, and mOFC of the left and 

right hemispheres.  The prefrontal region of the brain is divided into many sub-regions, 

and depending on the brain atlas used in analyses, the same location in two studies can 

be labeled as different areas.  For these analyses the lateral and medial OFC labels refer 

to the PFC and vmPFC of previous studies.  Based on the previous literature and that two 

of the larger loadings on the genetic factor score were for anxiety subscales, it is 

hypothesized that this genetic factor score will be associated with an increase in 

hippocampal and amygdalar volumes and a decrease in OFC and ACC sub-region cortical 

thicknesses.  The literature is ambiguous regarding direction of effect for some regions, 

so these hypotheses were chosen based on representative prior studies that had measures 

similar to this study.   

In contrast to the prior studies that focused on anxiety case-control differences, 

this chapter use a dimensional genetic factor score phenotype based on the best-fitting 
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model from chapter 3 that indexes fear and anxiety outcomes.  It is hypothesized that this 

score is more proximal to the biological processes related to fear and anxiety measures.  

Additionally, since the genetic factor score indexes a latent liability to both fear and 

anxiety measures, an exploratory aim seeks to investigate whether associations found 

between ROI volumes and the genetic factor score are driven by a specific scale.  This final 

exploratory aim is designed to replicate a previous study243 that used anxiety symptom 

sum scores to predict hippocampal volumes.  

 

Methods 

Participants   

The twins included in these analyses are a subset from the Virginia Commonwealth 

University Juvenile Anxiety Study (VCU-JAS).  VCU-JAS enrolled twins aged 9-14 across 

two sites (VCU and the National Institute of Mental Health; NIMH) to participate in a 

study of internalizing phenotypes.  Only Caucasian twins were recruited to minimize 

heterogeneity within the sample for the genetic aims of the overall study.  The 

Institutional Review Boards at VCU and NIMH approved this study, and parents of all 

participants provided informed consent before participating.  Self-report and 

neuroimaging data came from 105 youths (N=20 monozygotic (MZ) twin pairs, N= 24 

dizygotic (DZ) twin pairs, and 17 singletons) aged 9-14 years old consisting of 60 female 

and 45 male participants.  These participants were recruited post-hoc from those who 

participated in the larger VCU-JAS sample through an additional funding protocol. 

Zygosity was determined using parental responses to standard questions about physical 

appearance of the twins or DNA testing as described in detail elsewhere.227  For safety, 

children were excluded from the imaging protocol if they had metal braces or other metal 
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objects present in the body as an additional exclusionary criteria beyond those of the 

primary study. The only other exclusion criterion was the participant’s general tendency 

to be fidgety during the VCU-JAS assessments, since motion within the scanner disrupts 

imaging signals.  

 

Measures 

Fear  

The shortened 25-item form of the Fear Survey Schedule for Children Revised230 

(FSSC-RSF) was used for the analyses in this chapter.  The short form has a 5-factor 

structure similar to the full scale: fear of failure and criticism, fear of the unknown, fear 

of animals, fear of danger and death, and medical fears.  Further details on this measure 

can be found in chapter 3.  For consistency with prior studies, a single sum score was 

calculated for this measure and used as a general index of overall fearfulness with a mean 

of 46.70 (SD = 26.14, and skew = 0.65).  

 

Anxiety  

The 41-item version of the Screen for Child Anxiety-Related Emotional 

Disorders143 (SCARED) was used. This scale contains five subscales: panic (PAN), 

generalized anxiety (GAD), separation anxiety (SEP), social anxiety (SOC), and School 

Avoidance.  Since School Avoidance is not related to a specific DSM-IV disorder, it is not 

use in these analyses.  Chapter 3 contains a more detail introduction to this scale.  A single 

sum score was calculated from the four DSM-related subscales and used as a general 

index of overall anxiousness with a mean of 20.06 (SD = 10.78, and skew = 0.49).  

 



	 77	

MRI acquisition  

Structural images were collected at two sites: Virginia Commonwealth University 

(VCU); and the National Institute of Health (NIH).  At VCU a Philips Ingenia 3.0T scanner 

with a 32-channel head coil was used.  Imaging protocol included 3D magnetization-

prepared rapid gradient-echo (MPRAGE) T1-weighted volume optimized for maximum 

gray/white matter contrast with the following parameters: flip angle=6°; FOV=24 cm; 

slices=160; slice thickness=1mm; 240x240 matrix; repetition time [TR]= 8.1ms; echo 

time [TE]= 3.7ms).  At NIH a General Electric 3.0T scanner with an eight-channel head 

coil was used.  The imaging protocol included a 3D MPRAGE T1-weighted volume 

optimized for maximum gray/white matter contrast with the following parameters: flip 

angle=7°; FOV=25.6 cm; slices= 176; slice thickness=1mm; 256x256 matrix; TR= 7.7ms; 

TE= 3.4ms.  

 

MRI Processing 

  Processing of images was performed using standard, automated procedures 

available in the Freesurfer image analysis software suite, which is freely available for 

download and fully documented (Version 6.0, http://surfer.nmr.mgh.harvard.edu/).  

Processing consisted of motion correction187, correction of distortion due to gradient 

nonlinearity and B1 field inhomogeneity, image intensity normalization188, removal of 

non-brain tissue using a hybrid watershed/surface deformation procedure189, and 

automated Talairach transformation.  FreeSurfer software package routines190,191 were 

used to define gray matter, white matter, segmentation of subcortical structures, and 

cerebral spinal fluid segmentation.  After cortical models were created, the Desikan-

Killiany250 probabilistic atlas was used to assign neuroanatomical labels to each 
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voxel251,252 followed by subcortical volume and cortical thicknesses calculation using this 

parcellation.  The procedures used for cortical thickness measurement have been 

validated against histological analysis192 and manual measurements193,194.  The protocols 

used to obtain cortical thickness and subcortical volumes measurements have been used 

in previous child psychiatric research243,249,253–256.  

 

Cortical and Subcortical Measures 

Prior to all analyses all ROIs were regressed onto age, sex, scan site, and 

intracranial volume to account for the fixed effects of these covariates.  ROIs examined in 

this chapter include hippocampal volume, amygdala volume, rostral anterior cingulate 

cortex (rACC) mean thickness, caudal anterior cingulate cortex (cACC) mean thickness, 

lateral orbitofrontal cortex (lOFC) mean thickness, and the medial orbitofrontal cortex 

(mOFC) mean thickness separately in both the left and right hemispheres of the brain, for 

a total of 12 ROIs examined in these analyses.  Figures 4.1 and 4.2 illustrate these areas 

in the left hemisphere. 

 

 

    Figure 4.1 Divisions of the left orbitofrontal and anterior cingulate cortices 
Panel a shows a sagittal cross section and b shows an inferior view of the left 
hemisphere.  Medial orbitofrontal cortex (OFC) is illustrated in dark blue, lateral 
OFC in light blue.  Caudal anterior cingulate cortex (ACC) is in light green and 
rostral ACC is in dark green. 
	

a	
	b	
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Statistical Analyses 

Factor Scores 

Genetic factor scores were created in OpenMx based on the final best-fitting twin 

model from chapter 3.  This twin model included a single common genetic factor for the 

fear and anxiety measures described above. This factor score was created using a 

regression predictor.  In this approach the estimated parameters from a factor analysis 

are used to define linear combinations of observed variables, which then generate the 

factor scores.  Specifically, the Thomson-Thurstone regression method257–259 was used, 

which defines the factor score as the product of the factor loading matrix, the inverse of 

the data covariance matrix, and a vector containing the data.  Factor scores were 

calculated for the entire sample using the unstandardized factor loadings. 

 
Mixed Effect Linear Regression  

The random effects within a mixed effect linear regression were used to adjust for 

possible effects of correlated observations in the twin data.  In each regression, family ID 

and zygosity denoted family membership and whether the pair was monozygotic or 

Figure 4.2 Bilateral Structures of the Hippocampus and Amygdala 
Panel a shows a sagittal view of the hippocampus (light blue) and amygdala (yellow), b 
shows a coronal view and c shows a 3-dimensional bilateral reconstruction of the structures 
with a sagittal cut of the left hemisphere to provide relative spatial context. 

a	 b	 c	
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dizygotic, respectively, were entered as random effects.  The umx() package was used to 

obtain 95% confidence intervals for all standardized beta estimates.260 

 

Results 

Associations between genetic factor scores and 12 ROIs implicated in fear and 

anxiety in adults were examined.  Specifically, the genetic factor scores were used to 

predict volumes of sub-cortical ROIs and mean thickness of cortical ROIs.  A false 

discovery rate (FDR) was used to account for testing of the 12 ROIs.261  Although none of 

the results remained significant after multiple testing corrections, there were two regions 

with unadjusted p < 0.05, the left and right hippocampi (Table 4.1).  As a final exploratory 

aim, the association between fear and anxiety total scale sum scores and the left and right 

hippocampal volumes were examined, but no significant associations prior to FDR 

correction were found (Tables 4.2 and 4.3, respectively).  

 
Table 4.1 Genetic Factor Score predicting ROIs Measures in Separate Analyses 

Region of Interest β  [95% CI] t value p  FDR p 
L Hippocampus 76.86 [9.84, 143.88] 2.32 .026 .312 
R Hippocampus 83.41 [6.92, 159.91] 2.20 .033 .396 
L Amygdala -21.7 [-61.13, 17.73] -1.11 .273 .999 
R Amygdala -1.16 [-46.67, 44.34] -0.05 .959 .999 
L rACC -0.03 [-0.1, 0.04] -0.88 .382 .999 
R rACC 0.00 [-0.07, 0.07] -0.13 .900 .999 
L cACC -0.04 [-0.1, 0.02] -1.41 .165 .999 
R cACC -0.02 [-0.07, 0.04] -0.59 .560 .999 
L lOFC 0.02 [-0.02, 0.06] 0.95 .346 .999 
R lOFC 0.02 [-0.02, 0.06] 1.06 .296 .999 
L mOFC 0.01 [-0.04, 0.05] 0.26 .794 .999 
R mOFC 0.00 [-0.05, 0.04] -0.21 .832 .999 
β = standardized beta estimates, 95% CI = 95% confidence interval, FDR p= false discovery rate 
adjusted p value, L = left, R = right, rACC = rostral anterior cingulate cortex, cACC = caudal 
anterior cingulate cortex, lOFC = lateral orbitofrontal cortex, mOFC = medial orbitofrontal cortex. 
Using data from VCU-JAS mixed effect linear regressions were performed to predict subcortical 
volumes and cortical thicknesses based on genetic factor scores that index latent liability to fear 
and anxiety within the sample 
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Table 4.2 Continuous Measure of Fear Symptoms Predicting Hippocampal Volumes 
Variables  (95% CI)  t value p value 
L hippocampus 1.71 [-0.26, 3.69] 1.75 .087 
R hippocampus 2.09 [-0.31, 4.48] 1.76 .086 

 
 
 

 
 

Table 4.3 Continuous Measure Anxiety Symptoms Predicting Hippocampal Volumes 
Variables  (95% CI)  t value p value 
L hippocampus 1.97 [-2.68, 6.62] 0.86 .396 
R hippocampus 4.48 [-0.81, 9.77] 1.71 .095 

 
 

 
 

 

Discussion 

Mixed effect linear regressions were used to examine whether specific ROIs were 

associated with a genetic factor score indexing fear and anxiety within this child sample.  

Prior to multiple-testing correction using FDR, the left and right hippocampal volumes 

were significantly associated with greater genetic liability towards fear and anxiety.  After 

FDR correction no significant associations were found between the ROIs and a genetic 

factor score indexing fear and anxiety.  Simpler individual-based fear and anxiety 

measures were less informative. 

Larger mean hippocampal volume has been previously found in adults with 

anxiety262. However several child241–243 and adult134,135 anxiety studies have found either 

decreases in hippocampal volumes, or no differences at all in child155,244–246 or adult263–

265 samples.  Although most prior studies have implemented an anxiety disorder cases 

versus healthy controls study design, two previous studies also examined anxiety 

β = standardized beta estimates, 95% CI = 95% confidence interval, L = left, R = 
right. Using data from VCU-JAS mixed effect linear regressions were performed 
to predict hippocampal volumes based on fear symptom sum scores	

β = standardized beta estimates, 95% CI = 95% confidence interval, L = left, R = 
right. Using data from VCU-JAS mixed effect linear regressions were performed 
to predict left and right hippocampal volumes based on anxiety symptom sum 
scores  
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symptom severity as a continuous measure associated with hippocampal volume242,243.  

The first study by Koolschijn242 and colleagues examined the association between 

hippocampal and amygdalar volumes with an internalizing disorder score derived from 

the child behavior check list266.  They found lower left hippocampal volume was 

significantly associated with higher internalizing symptom scores.  In a similar approach 

Gold and colleagues243 found higher SCARED total scale sum scores were significantly 

associated with smaller right hippocampal volumes.  Both studies are relatively large for 

a child imaging study, and the Gold study using the SCARED is roughly the same size as 

the current study (N = 108 and N = 105, respectively) with approximately the same 

uncorrected p-values (0.02, and 0.03, respectively), although more regions were 

examined in this study and none of the findings survived multiple-testing correction.  

Since these analyses were focused on the genetic score which incorporates the SCARED 

and FSSC-RSF scales and the potential associations found were in the opposite direction 

of previous work, the next step was to specifically test whether hippocampal volumes were 

associated with SCARED and FSSC-RSF total scale scores.  In these follow-up analyses 

no significant results were found that corroborated or contradicted the findings of Gold 

et al. 

There are several potential reasons for these null results.  First, the morphometric 

differences observed in adult and child anxiety disorder patients versus healthy controls 

could be the result of neuroprocesses related to the specific disorders, and thus there may 

not be a predisposing difference that is detectible prior to the onset of a clinically 

significant symptom threshold.  This seems unlikely as a justification applicable to all 

anxiety disorders, however for some disorders these morphometric differences tend to 

disappear with successful treatment such as with phobias.18,129,136  Second, this sample is 



	 83	

still early in their onset trajectories for some of the ADs, with panic, generalized anxiety, 

and posttraumatic stress (the last of which is not examined in this juvenile sample but is 

of interest to this dissertation at large) having substantially later age of onset compared 

to the other disorders such as specific phobias, separation anxiety, and social phobias.267  

Given that panic and generalized anxiety with later onset ages were two of the largest 

loadings on the latent genetic factor from chapter 3 it is possible that the genetic factor 

score captured in these data does not fully account for the genetic variance expressed 

across both developmental and disease trajectories and, as such, limits the ability to 

detect significant associations. Lastly, these ROIs were originally selected as they are 

frequently examined within adult anxiety functional neuroimaging research.  However, 

these ROIs are not consistently implicated in the more limited number of structural 

studies of child anxiety disorders.  Most adult and child studies are also limited by small 

sample sizes, which further reduces their statistical power to detect significant results, 

especially when examining all brain regions rather than a pre-specified list.  Future 

imaging studies with larger sample sizes are needed to fully address these research 

questions in a more comprehensive manner than the extant literature offers.  The 

Adolescent Brain Cognitive Development study (ABCD study) is in the process of 

recruiting 11,500 9-10 year olds, including 800 twin pairs and will hopefully provide a 

sample size large enough to examine structural differences associated with fear and 

anxiety symptoms with adequate statistical power.  The enhancing neuroimaging genetics 

through meta analyses (ENIMGA) consortium may also be better suited to obtain and 

properly harmonize the largest collection of psychiatric focused neuroimaging samples.  

ENIGMA has already identified genetic loci associated with brain morphometry268 and 
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has several working groups currently developing projects across a variety of phenotypes 

including an anxiety focused working group (ENIGMA-ANX).  

These findings, or rather the lack thereof, should be interpreted in the context of 

several key limitations.  First, the exclusive use of Caucasian twins pairs to minimize the 

heterogeneity introduced with multiple ethnicities limits the generalizability of these 

results.  Second, it is possible that the most anxious and fearful participants from the full 

sample chose not to participate in this imaging portion due to the potentially stressful 

nature of additional imaging protocols. In fact, a 2-sample t-test shows a significant 

difference (p = 0.04) between the SCARED sum score means of this subsample (mean = 

20.06) and the full sample (mean = 22.31) as well as significant differences (p = .007) 

between the fear sum score mean of the subsample (mean = 46.70) and the full sample 

(mean = 53.91).  These differences may have artificially limited the upper bound of the 

fear and anxiety measures compared to the full sample and reduced the information 

available for the regression analyses by removing participants with the most extreme 

scores, which could be contributing to the null results of this study.  Lastly, these results 

may not generalize to clinical samples, because the measures of fear and anxiety are 

dimensional measures rather than being based on clinical diagnoses of anxiety disorders.  

In principle, this approach using full distributions of quantitative traits vs. categorical cut-

offs should have increased the power to detect associations between genetic liability to 

fear/anxiety and ROIs.  To conclude, it is still possible that ROIs differ between anxiety 

diagnoses and healthy controls.  A study with a larger sample size may find the differences 

sought in this chapter. 
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Chapter 5: Global Discussion 

 

 The broad aim of this dissertation was to identify whether differences in specific 

fear-network related brain morphometries were endophenotypes for PTSD, fear, and 

anxiety.  This was addressed by examining the etiological relationships between brain 

morphologies, PTSD in adults, and fear/anxiety in children.  The primary gap in the 

current understanding of brain morphometry endophenotypes is whether specific regions 

of interest (ROIs) have a genetic relationship to disorders to which they are 

phenotypically associated.  This dissertation focused on establishing these genetic 

relationships through twin data modeling and related analyses.  In the case of PTSD, 

trauma is known to be associated with adverse outcomes such as a PTSD diagnosis, but it 

has also been associated with morphometric differences in the brain between trauma-

exposed and healthy individuals.  In order to examine the etiological relationship between 

PTSD and ROIs trauma, exposure must also be taken into account.  The knowledge gained 

from these analyses will be particularly useful as the fields of neuroimaging and genetics 

continue to integrate, and larger neuroimaging datasets become publicly available. 

 In chapter 2, biometrical SEM was used to examine the shared etiology of PTSD 

and ROIs while accounting for trauma using a large population-based sample.  It was 

found that thinning of fear-network related cortical areas, specifically the right ACC, left
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lOFC, and left mOFC, were associated with increased PTSD symptom sum scores.  

Univariate twin models suggest that both genetic and unique environmental influences, 

but not familial environmental influences, contribute to the etiology of PTSD and brain 

morphology.  Examination of the overlapping etiology of PTSD and each of these three 

ROIs found that they had overlapping unique environmental influences, but they did not 

have overlapping genetic influences, as reflected by the wide confidence intervals that 

cross zero.  These results would suggest that while ROI differences may be useful as 

potential biomarkers for PTSD, they currently do not meet the criteria for 

endophenotypes based on these analyses.  To be considered an endophenotype a 

biomarker must be proven to associate with the disorder, be heritable, and have a genetic 

relationship to the disorder identified through either family, twin, or measured genotype 

based analyses.4  Although they did not share genetic influences, PTSD and ROIs did 

demonstrate overlapping environmental influences that may be worth further study.  As 

a final step, the etiological relationship between PTSD and ROIs was examined in the 

context of moderation by combat exposure.  It appears the phenotypic associations 

between them is entirely accounted for by moderation of combat exposure due to the fact 

that inclusion of the combat exposure moderator completely removed the previous 

environmental correlations between PTSD and each ROI.  However, the moderation 

estimates were small, and the instability of some of the models suggests the sample is 

underpowered to make any definitive conclusions on the role of trauma in the etiology of 

PTSD and ROIs.   

Despite the limited sample size of this study, the differences in morphometry of 

fear-network related brain regions do not appear to meet criteria for endophenotypes of 

PTSD at this time, as there was no genetic overlap found in this study.  Further research 
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is needed via larger twin samples or measured-genotype based analyses to replicate and 

extend these findings.  One study has already had success identifying overlapping genetic 

risk for obsessive-compulsive disorder with genetic influences on subcortical brain 

structures.269  Future analyses similar to this study are currently in progress with the 

Enhancing NeuroImaging Genetics Through Meta Analyses (ENIGMA) consortium. 

Examination of epigenetic changes associated with trauma exposure may provide a causal 

link between trauma exposure and the differences observed in brain morphometry.  

Previous work in epigenome-wide studies has implicated methylation changes on genes 

involved in immunity270  and methylation age271 with PTSD.  The methylation age was 

also negatively associated with neural integrity of the corpus callosum and nominally 

associated with lower neural integrity of the left rACC, providing further support of 

epigenetic effects of PTSD affecting brain morphometry.  Differences in gene expression 

patterns between PTSD and trauma-exposed controls have been identified and primarily 

aggregate in genes associated with cortisol response272 (which is known to be dyrsegulated 

in PTSD) and immunity.270  Further research into shared measured genotype and 

methylation is being pursued by the PTSD working group of the Psychiatric Genomics 

Consortium.  This working group is focused on pooling PTSD cases and trauma-exposed 

controls across many studies with the aim of finding genetic loci, methylation sites, and 

differences in gene expression associated with PTSD.  Ultimately combining work from 

ENIGMA and the PGC may provide a causal mechanism that explains the current 

phenotypic associations of PTSD and its brain biomarkers. 

Chapter 3 investigated the shared etiology of fear and anxiety in children.  The 

measures of fear and anxiety were found to have an overall similar etiologic covariance 

structure that included moderate influences of genetic plus familial and unique 
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environmental factors common to all subscales of fear or anxiety with the remaining 

influences due to outcome-specific genetic and unique environmental effects.  When 

examined together, the final best-fitting model for chapter 3 showed a single genetic 

factor was common to all subscales of fear and anxiety.  Familial environment was not 

strongly influential, with many subscales showing minimal to no influence from the 

familial environment.  The only common factor to demonstrate a degree of distinction 

between fear and anxiety was the unique environmental factor.  Overall, these findings 

suggest that although predisposing genetic influences for fear and anxiety largely overlap, 

their environmental influences may be the distinguishing wedge that separates the 

presentation of fear and anxiety from each other in children.  

The results of chapter 3 suggest the high comorbidity of anxiety disorders 

(including phobias) seen in community samples may be due, in part, to these highly 

shared genetic influences.  While studies in adults show a clearer distinction between the 

two domains and their sources of covariation, their expression in children appears to be 

more diffuse and malleable.  The pattern of ‘same genes but, different environments’ 

found in this chapter is also found in the relationship between two other comorbid 

disorders, depression and generalized anxiety.273,274  Fears, anxiety, and depression are 

all considered internalizing disorders so it is possible that this shared genetic influence 

may be tapping into something larger than just fear and anxiety.  The genetic influence in 

this chapter might be indexing something much more global such as a predisposition for 

internalizing negative behaviors.  Examination of additional internalizing symptoms and 

behaviors would provide further insight into the interplay of fear and anxiety in a broader 

context.  Future gene finding efforts involving pediatric samples may benefit from the 
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inclusion of multiple anxiety disorders or from the allowance of comorbidity with other 

anxiety disorders in case status individuals.   

Finally, chapter 4 tested whether ROIs previously implicated in fear processing 

and anxiety have a genetically-based relationship with fear/anxiety in children.  To test 

this hypothesis the results from chapter 3 were used to create a genetic factor score 

indexing latent liability to fear/anxiety.  This genetic score is thought to be more proximal 

to the biological processes related to fear and anxiety measures and may provide a 

stronger link between self-report measures of fear and anxiety with ROIs.  To test this 

hypothesis, genetic factor scores indexing an individual’s latent liability to fear/anxiety 

were incorporated into a mixed effect regression to predict ROI measures.  After multiple-

testing correction no significant associations were found between the ROIs and the 

genetic factor score, and simpler individual-based fear and anxiety measures were less 

informative.  There are two main potential reasons for these null results, including: 1) 

morphometric differences may be due to disease related neuroprocesses and as such are 

not detectible prior to the onset of a clinically significant symptom threshold; and 2) these 

participants might be too early in their onset trajectories for a genetic factor score to fully 

account for genetic variance expressed across developmental and disease trajectories, 

which limits the ability to detect significant associations.  While the genetic factor score 

was unable to conclusively identify endophenotypes, it did provide preliminary evidence 

for a genetic relationship between fear/anxiety and ROIs.  Consortia and larger studies 

that integrate genetically informative methods and neuroimaging, such as ENIGMA and 

ABCD, are better situated to address the sample size limitations seen in this chapter.  

Future research from these groups may benefit from using several different approaches 

to incorporate genetics into neuroimaging research, such as implementing a classic twin 
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design, or using polygenic risk scores created from large genome-wide association studies 

(GWAS) of psychiatric disorders.  Given the increase in genome-wide significant signals 

from anxiety and stress-related GWAS275–281, Mendelian randomization is also an option 

to examine potential causal effects of specific loci.  However, identification of SNPs 

associated with brain morphology is still a bit further behind compared to the field of 

psychiatric genetics.  

 

Limitations 

 The findings of this dissertation must be interpreted within the context of several 

limitations of these analyses.  Although detailed more thoroughly in previous chapters, 

some of these limitations do provide a framework for future research into the intersection 

of psychopathology, genetics and neuroimaging.   

A limitation for all phenotypic measures across both samples is that they were 

assessed via self-report questionnaires.  This presents limitations in a few different 

manners.  First, the measure of trauma is dependent on participant report of combat 

experiences 30 years prior, which raises concerns of recall biases.  Second, results from 

this dissertation may not generalize to clinical samples, because the measures of fear, 

anxiety, and PTSD are dimensional measures rather than being based on clinical 

diagnoses of disorders.  Although, in principle, this approach, using full distributions of 

quantitative traits vs. categorical cut-offs, should increase the power to detect associations 

between phenotypes.  Next, for both the adult and child samples all MRI data were 

obtained at two sites, which was partly accounted for in analyses by regressing out any 

contributions related to site of scan.  Additionally, for both samples each twin was 

scanned at the same site as their co-twin, and there were equal mixes of MZ and DZ twin 
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pairs scanned at each site.  The adult twin sample contained only male middle-aged 

participants, so the results may not be generalizable to women, younger populations, or 

individuals with trauma exposures other than combat experience.  While it was possible 

to control for fixed effects of age and sex within the analyses of the child sample, this 

sample does not possess sufficient power to examine their detailed influences on the 

latent genetic and environmental factors.  Additionally, previous studies indicated 

conflicting results regarding age and sex having a moderating effect on the variance of 

fear and anxiety measures124,146,147, so they were covaried for at the means level to 

minimize these biases.  Generalizability with results from the child sample is also limited 

due to the exclusive use of Caucasian twin pairs, which was driven by the aim to minimize 

genetic heterogeneity introduced when sampling from multiple ethnicities.  

 

Conclusions 

This dissertation used a trans-diagnostic framework to examine the shared 

etiology of PTSD, fear, anxiety, and fear-network related brain morphometries.  There 

were several novel findings regarding etiology of threat-related domains, and associated 

brain morphometry.  Analyses investigating brain morphometric differences as potential 

endophenotypes for PTSD provided preliminary evidence that their association is largely 

accounted for by environmental influences, specifically trauma exposure.  However, the 

small sample size caused model instabilities, which in turn limited the ability to make 

definitive conclusions.  Examining domains of fear and anxiety in children found a 

substantial genetic overlap between the two.  Lastly, incorporating a genetic factor score 

derived from the results of the previous chapter on fear and anxiety provided preliminary 

evidence for a genetic relationship between fear/anxiety and ROIs. 
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Although this dissertation extensively examined brain morphology of fear-network 

related regions, there are still many alternative imaging modalities available for 

examining the association between brain morphometry/functioning and psychiatric 

disorders, and these may provide further insight into potential psychiatric 

endophenotypes.  Further research is needed to identify endophenotypes across these 

modalities with the ultimate goal of linking disorder outcomes to genetic, epigenetic, and 

gene expression changes.  This understanding of biological pathways and mechanisms 

that result in psychiatric disorders could eventually help identify potential prevention or 

treatment options.  
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