3,318 research outputs found

    Automated classification of malignant melanoma based on detection of atypical pigment network in dermoscopy images of skin lesions

    Get PDF
    “Melanoma causes more deaths than any other form of skin cancer. Early melanoma detection is important to prevent progression to a more deadly stage. Automated computer-based identification of melanoma from dermoscopic images of skin lesions is the most efficient method in early diagnosis. An automated melanoma identification system must include multiple steps, involving lesion segmentation, feature extraction, feature combination and classification. In this research, a classifier-based approach for automatically selecting a lesion border mask for segmentation of dermoscopic skin lesion images is presented. A logistic regression based model selects a single lesion border mask from multiple border masks generated by multiple lesion segmentation algorithms. This research also presents a method of segmenting atypical pigment network (APN) based on variance in the red plane in the lesion area of a dermoscopic image. Features extracted from APN regions are used in automated classification of melanoma. The automated identification of melanoma is further improved by fusion of other features relevant to melanoma detection. This research uses clinical features, APN features, median split cluster features, pink area features, white area features and salient point features in various hierarchical combinations to improve the overall performance in melanoma identification. A training set of 837 dermoscopic skin lesion images together with a disjoint test set of 804 dermoscopic skin lesion images are used in this research to produce the experimental findings”--Abstract, page iv

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Analysis of the contour structural irregularity of skin lesions using wavelet decomposition

    Get PDF
    The boundary irregularity of skin lesions is of clinical significance for the early detection of malignant melanomas and to distinguish them from other lesions such as benign moles. The structural components of the contour are of particular importance. To extract the structure from the contour, wavelet decomposition was used as these components tend to locate in the lower frequency sub-bands. Lesion contours were modeled as signatures with scale normalization to give position and frequency resolution invariance. Energy distributions among different wavelet sub-bands were then analyzed to extract those with significant levels and differences to enable maximum discrimination. Based on the coefficients in the significant sub-bands, structural components from the original contours were modeled, and a set of statistical and geometric irregularity descriptors researched that were applied at each of the significant sub-bands. The effectiveness of the descriptors was measured using the Hausdorff distance between sets of data from melanoma and mole contours. The best descriptor outputs were input to a back projection neural network to construct a combined classifier system. Experimental results showed that thirteen features from four sub-bands produced the best discrimination between sets of melanomas and moles, and that a small training set of nine melanomas and nine moles was optimum

    Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload.

    Get PDF
    Standard of care diagnostic procedure for suspected skin cancer is microscopic examination of hematoxylin & eosin stained tissue by a pathologist. Areas of high inter-pathologist discordance and rising biopsy rates necessitate higher efficiency and diagnostic reproducibility. We present and validate a deep learning system which classifies digitized dermatopathology slides into 4 categories. The system is developed using 5,070 images from a single lab, and tested on an uncurated set of 13,537 images from 3 test labs, using whole slide scanners manufactured by 3 different vendors. The system\u27s use of deep-learning-based confidence scoring as a criterion to consider the result as accurate yields an accuracy of up to 98%, and makes it adoptable in a real-world setting. Without confidence scoring, the system achieved an accuracy of 78%. We anticipate that our deep learning system will serve as a foundation enabling faster diagnosis of skin cancer, identification of cases for specialist review, and targeted diagnostic classifications
    • …
    corecore