2 research outputs found

    A speed-up procedure for the hybrid flow shop scheduling problem

    Get PDF
    Article number 115903During the last decades, hundreds of approximate algorithms have been proposed in the literature addressing flow-shop-based scheduling problems. In the race for finding the best proposals to solve these problems, speedup procedures to compute objective functions represent a key factor in the efficiency of the algorithms. This is the case of the well-known Taillard’s accelerations proposed for the traditional flow shop with makespan minimisation or several other accelerations proposed for related scheduling problems. Despite the interest in proposing such methods to improve the efficiency of approximate algorithms, to the best of our knowledge, no speed-up procedure has been proposed so far in the hybrid flow shop literature. To tackle this challenge, we propose in this paper a speed-up procedure for makespan minimisation, which can be incorporate in insertion-based neighbourhoods using a complete representation of the solutions. This procedure is embedded in the traditional iterated greedy algorithm. The computational experience shows that even incorporating the proposed speed-up procedure in this simple metaheuristic results in outperforming the best metaheuristic for the problem under consideration.Junta de Andalucía(España) US-1264511Ministerio de Ciencia e Innovación (España) PID2019-108756RB-I0

    A critical-path based iterated local search for the green permutation flowshop problem

    Get PDF
    The permutation flowshop scheduling problem is a widely studied combinatorial optimization problem with several real-world applications. In this paper we address a green variant of the problem with controllable processing times and two objective functions: one related to the service level of the factory (makespan) and another one related to the total cost or the total energy/carbon consumption. For this problem we propose a novel Critical-Path based Iterated Local Search. This metaheuristic incorporates several theoretical results to accelerate the search of solutions in the intensification phase. The proposed algorithm has been compared on an extensive benchmark with the most promising algorithms in the literature. The computational results show the excellent performance of the proposal.Ministerio de Ciencia e Innovación PID2019-108756RB-I00Junta de Andalucía US-126451
    corecore