747 research outputs found

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Resilient cooling of buildings: state of the art review

    Get PDF
    Name of the research project : IEA Annex 80 – Resilient Cooling of Buildings Publisher: Institute of Building Research & Innovation ZT GmbH, AustriaThis report summarizes an assessment of current State-of-the Art resilient cooling strategies and technologies. It is a result of a collaborative work conducted by participants members of IEA EBC Annex 80. This report consists of four chapters. In the first chapter are included relevant technologies and strategies that contribute to reducing heat loads to people and indoor environments. These technologies/strategies include Advanced window/glazing and shading technologies, Cool envelope materials, Evaporative Envelope Surfaces, Ventilated Envelope Surfaces and Heat Storage and Release. In the second chapter are assessed cooling strategies and technologies that are responsible for removing sensible heat in indoor environments: Ventilative cooling, Evaporative Cooling, Compression refrigeration, Desiccant cooling system, Ground source cooling, Night sky radiative cooling and High-temperature cooling systems. In the third chapter various typologies of cooling strategies and technologies are assessed inside the framework of enhancing personal comfort apart from space cooling. This group of strategies/technologies comprise of: Vertical-axis ceiling fans and horizontal-axis wall fans (such fixed fans differ from pure PCS in that they may be operated under imposed central control or under group or individual control), Small desktop-scale fans or stand fans, Furnitureintegrated fan jets, Devices combining fans with misting/evaporative cooling, Cooled chairs, with convective/conductive cooled heat absorbing surfaces, Cooled desktop surfaces, Workstation micro-air-conditioning units, some including phase change material storage, Radiantly cooled panels (these are currently less for PCS than for room heat load extraction), Conductive wearables, Fan-ventilated clothing ensembles, Variable clothing insulation: flexible dress codes and variable porosity fabrics. In the fourth chapter technologies and strategies pertinent to removing latent heat from indoor environments are assessed. This group includes Desiccant dehumidification, Refrigeration dehumidification, Ventilation dehumidification, and Thermos-electric dehumidification.Preprin

    Optimizing Flow Routing Using Network Performance Analysis

    Get PDF
    Relevant conferences were attended at which work was often presented and several papers were published in the course of this project. • Muna Al-Saadi, Bogdan V Ghita, Stavros Shiaeles, Panagiotis Sarigiannidis. A novel approach for performance-based clustering and management of network traffic flows, IWCMC, ©2019 IEEE. • M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi: Unsupervised Machine Learning-Based Elephant and Mice Flow Identification, Computing Conference 2021. • M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi: SDN-Based Routing Framework for Elephant and Mice Flows Using Unsupervised Machine Learning, Network, 3(1), pp.218-238, 2023.The main task of a network is to hold and transfer data between its nodes. To achieve this task, the network needs to find the optimal route for data to travel by employing a particular routing system. This system has a specific job that examines each possible path for data and chooses the suitable one and transmit the data packets where it needs to go as fast as possible. In addition, it contributes to enhance the performance of network as optimal routing algorithm helps to run network efficiently. The clear performance advantage that provides by routing procedures is the faster data access. For example, the routing algorithm take a decision that determine the best route based on the location where the data is stored and the destination device that is asking for it. On the other hand, a network can handle many types of traffic simultaneously, but it cannot exceed the bandwidth allowed as the maximum data rate that the network can transmit. However, the overloading problem are real and still exist. To avoid this problem, the network chooses the route based on the available bandwidth space. One serious problem in the network is network link congestion and disparate load caused by elephant flows. Through forwarding elephant flows, network links will be congested with data packets causing transmission collision, congestion network, and delay in transmission. Consequently, there is not enough bandwidth for mice flows, which causes the problem of transmission delay. Traffic engineering (TE) is a network application that concerns with measuring and managing network traffic and designing feasible routing mechanisms to guide the traffic of the network for improving the utilization of network resources. The main function of traffic engineering is finding an obvious route to achieve the bandwidth requirements of the network consequently optimizing the network performance [1]. Routing optimization has a key role in traffic engineering by finding efficient routes to achieve the desired performance of the network [2]. Furthermore, routing optimization can be considered as one of the primary goals in the field of networks. In particular, this goal is directly related to traffic engineering, as it is based on one particular idea: to achieve that traffic is routed according to accurate traffic requirements [3]. Therefore, we can say that traffic engineering is one of the applications of multiple improvements to routing; routing can also be optimized based on other factors (not just on traffic requirements). In addition, these traffic requirements are variable depending on analyzed dataset that considered if it is data or traffic control. In this regard, the logical central view of the Software Defined Network (SDN) controller facilitates many aspects compared to traditional routing. The main challenge in all network types is performance optimization, but the situation is different in SDN because the technique is changed from distributed approach to a centralized one. The characteristics of SDN such as centralized control and programmability make the possibility of performing not only routing in traditional distributed manner but also routing in centralized manner. The first advantage of centralized routing using SDN is the existence of a path to exchange information between the controller and infrastructure devices. Consequently, the controller has the information for the entire network, flexible routing can be achieved. The second advantage is related to dynamical control of routing due to the capability of each device to change its configuration based on the controller commands [4]. This thesis begins with a wide review of the importance of network performance analysis and its role for understanding network behavior, and how it contributes to improve the performance of the network. Furthermore, it clarifies the existing solutions of network performance optimization using machine learning (ML) techniques in traditional networks and SDN environment. In addition, it highlights recent and ongoing studies of the problem of unfair use of network resources by a particular flow (elephant flow) and the possible solutions to solve this problem. Existing solutions are predominantly, flow routing-based and do not consider the relationship between network performance analysis and flow characterization and how to take advantage of it to optimize flow routing by finding the convenient path for each type of flow. Therefore, attention is given to find a method that may describe the flow based on network performance analysis and how to utilize this method for managing network performance efficiently and find the possible integration for the traffic controlling in SDN. To this purpose, characteristics of network flows is identified as a mechanism which may give insight into the diversity in flow features based on performance metrics and provide the possibility of traffic engineering enhancement using SDN environment. Two different feature sets with respect to network performance metrics are employed to characterize network traffic. Applying unsupervised machine learning techniques including Principal Component Analysis (PCA) and k-means cluster analysis to derive a traffic performance-based clustering model. Afterward, thresholding-based flow identification paradigm has been built using pre-defined parameters and thresholds. Finally, the resulting data clusters are integrated within a unified SDN architectural solution, which improves network management by finding the best flow routing based on the type of flow, to be evaluated against a number of traffic data sources and different performance experiments. The validation process of the novel framework performance has been done by making a performance comparison between SDN-Ryu controller and the proposed SDN-external application based on three factors: throughput, bandwidth,and data transfer rate by conducting two experiments. Furthermore, the proposed method has been validated by using different Data Centre Network (DCN) topologies to demonstrate the effectiveness of the network traffic management solution. The overall validation metrics shows real gains, the results show that 70% of the time, it has high performance with different flows. The proposed routing SDN traffic-engineering paradigm for a particular flow therefore, dynamically provisions network resources among different flow types

    Radio frequency communication and fault detection for railway signalling

    Get PDF
    The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field

    Driving Manufacturing Systems for the Fourth Industrial Revolution

    Get PDF
    It has been a long way since the aroused of the Industry 4.0 and the companies' reality is not already align with this new concept. Industry 4.0 is ongoing slowly as it was expected that its maturity level should be higher. The companies´ managers should have a different approach to the adoption of the industry 4.0 enabling technologies on their manufacturing systems to create smart nets along all production process with the connection of elements on the manu-facturing system such as machines, employees, and systems. These smart nets can control and make autonomous decisions efficiently. Moreover, in the industry 4.0 environment, companies can predict problems and failures along all production process and react sooner regarding maintenance or production changes for instance. The industry 4.0 environment is a challenging area because changes the relation between humans and machines. In this way, the scope of this thesis is to contribute to companies adopting the industry 4.0 enabling technologies in their manufacturing systems to improve their competitiveness to face the incoming future. For this purpose, this thesis integrates a research line oriented to i) the understanding of the industry 4.0 concepts, and its enabling technologies to perform the vision of the smart factory, ii) the analysis of the industry 4.0 maturity level on a regional industrial sector and to understand how companies are facing the digital transformation challenges and its barriers, iii) to analyze in deep the industry 4.0 adoption in a company and understand how this company can reach higher maturity levels, and iv) the development of strategic scenarios to help companies on the digital transition, proposing risk mitigations plans and a methodology to develop stra-tegic scenarios. This thesis highlights several barriers to industry 4.0 adoption and also brings new ones to academic and practitioner discussion. The companies' perception related to these barriers Is also discussed in this thesis. The findings of this thesis are of significant interest to companies and managers as they can position themselves along this research line and take advantage of it using all phases of this thesis to perform a better knowledge of this industrial revolution, how to perform better industry 4.0 maturity levels and they can position themselves in the proposed strategic scenarios to take the necessary actions to better face this industrial revolution. In this way, it is proposed this research line for companies to accelerate their digital transformation.Já existe um longo percurso desde o aparecimento da indústria 4.0 e a realidade das empresas ainda não está alinhada com este novo conceito. A indústria 4.0 está em andamento lento, pois era esperado que o seu nível de maturidade fosse maior. Os gestores das empresas devem ter uma abordagem diferente na adoção das tecnologias facilitadoras da indústria 4.0 nos seus sistemas produtivos para criar redes inteligentes ao longo de todo o processo produtivo com a conexão de elementos do sistema produtivo como máquinas, operários e sistemas. Estas redes inteligentes podem controlar e tomar decisões autónomas com eficiência. Além disso, no ambiente da indústria 4.0, as empresas podem prever problemas e falhas ao longo de todo o processo produtivo e reagir mais cedo em relação a manutenções ou mudanças de produção, por exemplo. O ambiente da indústria 4.0 é uma área desafiadora devido às mudanças na relação entre humanos e máquinas. Desta forma, o objetivo desta tese é contribuir para que as empresas adotem as tecnologias facilitadoras das indústria 4.0 nos seus sistemas produtivos por forma a melhorar sua competitividade para enfrentar o futuro que se aproxima. Para isso, esta tese integra uma linha de investigação orientada para i) a compreensão dos conceitos da indústria 4.0, e suas tecnologias facilitadores para realizar a visão da fábrica inteligente, ii) a análise do nível de maturidade da indústria 4.0 num setor industrial regional e entender como as empresas estão enfrentando os desafios da transformação digital e suas barreiras, iii) analisar a fundo a adoção da indústria 4.0 numa empresa e entender como essa empresa pode atingir níveis mais elevados de maturidade, e iv) o desenvolvimento de cenários estratégicos para ajudar as empresas na transição digital, propondo planos de mitigação de riscos e uma metodologia para desenvolver cenários estratégicos. Esta tese destaca várias barreiras à adoção da indústria 4.0 e também traz novas barreiras para a discussão acadêmica e profissional. A perceção das empresas em relação a essas barreiras também é discutida nesta tese. As descobertas nesta tese são de grande interesse para empresas e gestores, pois podem-se posicionar ao longo desta linha de investigação e aproveitá-la utilizando todas as fases desta tese para obter um melhor conhecimento desta revolução industrial, como obter melhores níveis de maturidade da indústria 4.0 e possam posicionar-se nos cenários estratégicos propostos por forma a tomar as ações necessárias para melhorar o envolvimento nesta revolução industrial. Desta forma, propõe-se esta linha de investigação para que as empresas acelerem a sua transformação digital

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts
    • …
    corecore