683 research outputs found

    Ad-hoc Stream Adaptive Protocol

    Get PDF
    With the growing market of smart-phones, sophisticated applications that do extensive computation are common on mobile platform; and with consumers’ high expectation of technologies to stay connected on the go, academic researchers and industries have been making efforts to find ways to stream multimedia contents to mobile devices. However, the restricted wireless channel bandwidth, unstable nature of wireless channels, and unpredictable nature of mobility, has been the major road block for wireless streaming advance forward. In this paper, various recent studies on mobility and P2P system proposal are explained and analyzed, and propose a new design based on existing P2P systems, aimed to solve the wireless and mobility issues

    A Survey of System Architecture Requirements for Health Care-Based Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted

    Mobility in IPv6

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2001 - Høgskolen i Agder, GrimstadIn the future it is expectable that the number of terminals with wireless access to network resources will be more and more widespread, and it is therefore necessary to integrate mobility support into future generation networks so that users can be online, even while in motion. The increasing use of Internet suggests that the Internet technology can be the best candidate for effective realization of future generation mobile systems. Mobile IP can offer the possibility for use of the mobile Internet in other ways than it is used in the standard wired environment, and may be the solution to increasing mobility demands. Due to this, mobility in IPv6 (MIPv6) is designed to be scalable, stable, efficient and secure, which are the factors considered important for this thesis. Scalable – The number of users are expected to be so many that MIPv6 is, according to its specification, designed to scale almost as well as Internet without mobility support integrated. This implies the elimination of triangle routing, currently a challenge in MIPv4, and also a reasonable amount of data that must be managed by the nodes involved in mobility. MIPv6 is also designed so that future extensions and modifications are possible by allowing further growth. Stable – For the adoption rate of this technology to high, the users must be able to depend on the services provided. At present the implementations shows that there are still a few more steps to take until necessary stability is offered, but product quality releases of MIPv6 is expected to be released sometime next year. The implementation tested in this thesis reflects transparent mobility as to simple higher-level applications such as telnet and http, but not real-time applications. The implementation described in this thesis had some initial problems with the procedures for Duplicate Address Detection (DAD), which shall guarantee that all addresses on any given IPv6 network is unique. Some improvements for DAD have therefore been proposed in order to get better solutions as to fault-handling procedures when DAD fails. Efficient – Base MIPv6 as used in our implementation does not provide the handover efficiency needed for all kinds of applications. Seen from a traditional Internet point of view, the services offered are of best effort quality. A future version of the Internet protocol must, however, be designed to support applications with greater demands to handover latencies, than what a best effort service level can provide. Thus, the handover latency must in these cases be so small that it goes within the boundaries for e.g. demanding real-time applications. Several solutions are proposed for this purpose, but the area of research is still very new and no proposal will be defined for still some time. It seems like the initial mobility deployment phase will be without support for these services, but the technology is very promising and will most likely be integrated as the use of MIPv6 advances. Secure – In a large mobile environment mobile nodes will not only require Internet access within their own domain. They will also probably visit foreign networks, and as known from GSM infrastructure today, this will not be free of charge. Service providers in foreign domains commonly require authorization to ensure a good business relationship with the client. This leads directly to authentication, and of course accounting (AAA). This AAA infrastructure should be in place before mobile Internet can be deployed worldwide

    Location Management in IP-based Future LEO Satellite Networks: A Review

    Full text link
    Future integrated terrestrial, aerial, and space networks will involve thousands of Low Earth Orbit (LEO) satellites forming a network of mega-constellations, which will play a significant role in providing communication and Internet services everywhere, at any time, and for everything. Due to its very large scale and highly dynamic nature, future LEO satellite networks (SatNets) management is a very complicated and crucial process, especially the mobility management aspect and its two components location management and handover management. In this article, we present a comprehensive and critical review of the state-of-the-art research in LEO SatNets location management. First, we give an overview of the Internet Engineering Task Force (IETF) mobility management standards (e.g., Mobile IPv6 and Proxy Mobile IPv6) and discuss their location management techniques limitations in the environment of future LEO SatNets. We highlight future LEO SatNets mobility characteristics and their challenging features and describe two unprecedented future location management scenarios. A taxonomy of the available location management solutions for LEO SatNets is presented, where the solutions are classified into three approaches. The "Issues to consider" section draws attention to critical points related to each of the reviewed approaches that should be considered in future LEO SatNets location management. To identify the gaps, the current state of LEO SatNets location management is summarized. Noteworthy future research directions are recommended. This article is providing a road map for researchers and industry to shape the future of LEO SatNets location management.Comment: Submitted to the Proceedings of the IEE

    Lossless Multicast Handovers in Proxy Fast Mobile IPv6 Networks

    Get PDF
    There is a demand in the Public Protection and Disaster Relief (PPDR) community for high bandwidth services on mobile devices. Group communication is an important aspect of PPDR networks. In IP based networks multicast is the preferred method to efficiently transmit data to more than one receiver simultaneously. It is important PPDR users can switch seamlessly between wireless networks. This paper describes improvements to multicast in Fast handovers for Proxy Mobile IPv6 (PFMIPv6) to provide seamless mobility to its users. We also identify and explore the specific problems stemming from difference in end-to-end delay between the old and new path during handovers for multicast traffic. A novel mechanism to determine the delay difference between two paths in a PFMIPv6 system is described and an implementation of this system is evaluated. It is shown the proposed approach can prevent multicast packet loss during a handover
    • …
    corecore