6,460 research outputs found

    Scalable Neural Network Decoders for Higher Dimensional Quantum Codes

    Get PDF
    Machine learning has the potential to become an important tool in quantum error correction as it allows the decoder to adapt to the error distribution of a quantum chip. An additional motivation for using neural networks is the fact that they can be evaluated by dedicated hardware which is very fast and consumes little power. Machine learning has been previously applied to decode the surface code. However, these approaches are not scalable as the training has to be redone for every system size which becomes increasingly difficult. In this work the existence of local decoders for higher dimensional codes leads us to use a low-depth convolutional neural network to locally assign a likelihood of error on each qubit. For noiseless syndrome measurements, numerical simulations show that the decoder has a threshold of around 7.1%7.1\% when applied to the 4D toric code. When the syndrome measurements are noisy, the decoder performs better for larger code sizes when the error probability is low. We also give theoretical and numerical analysis to show how a convolutional neural network is different from the 1-nearest neighbor algorithm, which is a baseline machine learning method

    Schur-Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations

    Get PDF
    Schur-Weyl duality is a ubiquitous tool in quantum information. At its heart is the statement that the space of operators that commute with the tensor powers of all unitaries is spanned by the permutations of the tensor factors. In this work, we describe a similar duality theory for tensor powers of Clifford unitaries. The Clifford group is a central object in many subfields of quantum information, most prominently in the theory of fault-tolerance. The duality theory has a simple and clean description in terms of finite geometries. We demonstrate its effectiveness in several applications: (1) We resolve an open problem in quantum property testing by showing that "stabilizerness" is efficiently testable: There is a protocol that, given access to six copies of an unknown state, can determine whether it is a stabilizer state, or whether it is far away from the set of stabilizer states. We give a related membership test for the Clifford group. (2) We find that tensor powers of stabilizer states have an increased symmetry group. We provide corresponding de Finetti theorems, showing that the reductions of arbitrary states with this symmetry are well-approximated by mixtures of stabilizer tensor powers (in some cases, exponentially well). (3) We show that the distance of a pure state to the set of stabilizers can be lower-bounded in terms of the sum-negativity of its Wigner function. This gives a new quantitative meaning to the sum-negativity (and the related mana) -- a measure relevant to fault-tolerant quantum computation. The result constitutes a robust generalization of the discrete Hudson theorem. (4) We show that complex projective designs of arbitrary order can be obtained from a finite number (independent of the number of qudits) of Clifford orbits. To prove this result, we give explicit formulas for arbitrary moments of random stabilizer states.Comment: 60 pages, 2 figure

    Cross-verification of independent quantum devices

    Get PDF
    Quantum computers are on the brink of surpassing the capabilities of even the most powerful classical computers. This naturally raises the question of how one can trust the results of a quantum computer when they cannot be compared to classical simulation. Here we present a verification technique that exploits the principles of measurement-based quantum computation to link quantum circuits of different input size, depth, and structure. Our approach enables consistency checks of quantum computations within a device, as well as between independent devices. We showcase our protocol by applying it to five state-of-the-art quantum processors, based on four distinct physical architectures: nuclear magnetic resonance, superconducting circuits, trapped ions, and photonics, with up to 6 qubits and 200 distinct circuits

    Application of differential evolution to power system stabilizer design

    Get PDF
    Includes synopsis.Includes bibliographical references.In recent years, many Evolutionary Algorithms (EAs) such as Genetic Algorithms (GAs) have been proposed to optimally tune the parameters of the PSS. GAs are population based search methods inspired by the mechanism of evolution and natural genetic. Despite the fact that GAs are robust and have given promising results in many applications, they still have some drawbacks. Some of these drawbacks are related to the problem of genetic drift in GA which restricts the diversity in the population. ... To cope with the above mentioned drawbacks, many variants of GAs have been proposed often tailored to a particular problem. Recently, several simpler and yet effective heuristic algorithms such as Population Based Incremental Learning (PBIL) and Differential Evolution (DE), etc., have received increasing attention

    An Adaptive Entanglement Distillation Scheme Using Quantum Low Density Parity Check Codes

    Full text link
    Quantum low density parity check (QLDPC) codes are useful primitives for quantum information processing because they can be encoded and decoded efficiently. Besides, the error correcting capability of a few QLDPC codes exceeds the quantum Gilbert-Varshamov bound. Here, we report a numerical performance analysis of an adaptive entanglement distillation scheme using QLDPC codes. In particular, we find that the expected yield of our adaptive distillation scheme to combat depolarization errors exceed that of Leung and Shor whenever the error probability is less than about 0.07 or greater than about 0.28. This finding illustrates the effectiveness of using QLDPC codes in entanglement distillation.Comment: 12 pages, 6 figure

    A Heuristic Dynamic Programming Based Power System Stabilizer for a Turbogenerator in a Single Machine Power System

    Get PDF
    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, a novel design of power system stabilizer (PSS) based on heuristic dynamic programming (HDP) is proposed in this paper. HDP combining the concepts of dynamic programming and reinforcement learning is used in the design of a nonlinear optimal power system stabilizer. The proposed HDP based PSS is evaluated against the conventional power system stabilizer and indirect adaptive neurocontrol based PSS under small and large disturbances in a single machine infinite bus power system setup. Results are presented to show the effectiveness of this new technique

    Implementing and characterizing precise multi-qubit measurements

    Full text link
    There are two general requirements to harness the computational power of quantum mechanics: the ability to manipulate the evolution of an isolated system and the ability to faithfully extract information from it. Quantum error correction and simulation often make a more exacting demand: the ability to perform non-destructive measurements of specific correlations within that system. We realize such measurements by employing a protocol adapted from [S. Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604 (2013)], enabling real-time selection of arbitrary register-wide Pauli operators. Our implementation consists of a simple circuit quantum electrodynamics (cQED) module of four highly-coherent 3D transmon qubits, collectively coupled to a high-Q superconducting microwave cavity. As a demonstration, we enact all seven nontrivial subset-parity measurements on our three-qubit register. For each we fully characterize the realized measurement by analyzing the detector (observable operators) via quantum detector tomography and by analyzing the quantum back-action via conditioned process tomography. No single quantity completely encapsulates the performance of a measurement, and standard figures of merit have not yet emerged. Accordingly, we consider several new fidelity measures for both the detector and the complete measurement process. We measure all of these quantities and report high fidelities, indicating that we are measuring the desired quantities precisely and that the measurements are highly non-demolition. We further show that both results are improved significantly by an additional error-heralding measurement. The analyses presented here form a useful basis for the future characterization and validation of quantum measurements, anticipating the demands of emerging quantum technologies.Comment: 10 pages, 5 figures, plus supplemen
    corecore