4 research outputs found

    Crowdsourcing Based WiFi Radio Map Management with Magnetic Landmark and PDR

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ๊ถŒํƒœ๊ฒฝ.๋ชจ๋ฐ”์ผ ๋””๋ฐ”์ด์Šค๋ฅผ ์ด์šฉํ•˜๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๋Š˜์–ด๋‚˜๋ฉด์„œ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋‚˜ ์ƒํ™ฉ์— ์•Œ๋งž์€ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์œ„์น˜ ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค(LBS, Location Based Service)๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์‹ค์™ธ์—์„œ๋Š” GPS ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ์ธก์œ„ ์„œ๋น„์Šค๊ฐ€ ๊ฐ€๋Šฅํ•œ ๋ฐ˜๋ฉด, ์‹ค๋‚ด์—์„œ๋Š” GPS ์‹ ํ˜ธ๋ฅผ ์ˆ˜์‹ ํ•˜๊ธฐ์— ์–ด๋ ค์›€์ด ์žˆ์–ด, ๋‹ค๋ฅธ ์ธก์œ„ ์ž์›๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ์ธก์œ„๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. WiFi๋Š” ๊ณ ์† ๋ฌด์„ ํ†ต์‹ ์„ ์œ„ํ•˜์—ฌ ๋งŽ์€ AP๋“ค์ด ์กด์žฌ ์‹ค๋‚ด์— ๋งŽ์ด ์„ค์น˜๊ฐ€ ๋˜์–ด ์žˆ์–ด์„œ, ์„œ๋น„์Šค ์ง€์—ญ์—์„œ์˜ ๋ผ๋””์˜ค๋งต์„ ์ˆ˜์ง‘ํ•˜๋Š” ํ•‘๊ฑฐํ”„๋ฆฐํŒ…(Fingerprinting) ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•  ๊ฒฝ์šฐ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค [1][2]. ํ•˜์ง€๋งŒ, ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ํ™˜๊ฒฝ์ ์ธ ์š”์ธ์— ์˜ํ•ด์„œ ์‹ ํ˜ธ์˜ ํŠน์„ฑ์ด ๋ณ€ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ง€์†์ ์œผ๋กœ ์ „์ฒด ์„œ๋น„์Šค ์ง€์—ญ์˜ ๋ผ๋””์˜ค๋งต์„ ์žฌ์ˆ˜์ง‘ํ•˜๋Š” ๋“ฑ์˜ ๊ด€๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ WiFi ๋ผ๋””์˜ค๋งต์„ ์ง€์†์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ์‚ฌ์šฉ์ž๋“ค์˜ ์œ„์น˜์—์„œ ๊ด€์ฐฐํ•œ ํ•‘๊ฑฐํ”„๋ฆฐํŠธ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ผ๋””์˜ค๋งต์˜ ์–‘์ƒ์ด ๋ณ€ํ•˜๋Š” ๊ฒƒ์„ ๊ฐ์ง€ํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๊นŒ์ง€ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์‚ฌ์šฉ์ž์˜ ์ถ”์ •๋œ ์œ„์น˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ผ๋””์˜ค๋งต์˜ ๊ด€๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ผ๋””์˜ค๋งต์˜ ์˜ค์—ผ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค์—ผ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ PDR ๋ฐ ์ง€์ž๊ธฐ ๋žœ๋“œ๋งˆํฌ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ์‚ฌ์šฉ์ž ์œ„์น˜ ์ถ”์ •์„ ํ•  ์ˆ˜ ์žˆ๋‹ค.Recently, the portion of people using smartphone are continuously increasing, applications of location-based services (LBS) have been exploding to release and studied. Outdoor positioning may not be a big deal by exploiting triangulation of GPS signals, which offers reliable service in general. However, in indoor, GPS signal does not reachable inside of building or not enough to estimating a position with triangulation. Therefore, other sensor modules should be used to indoor localization. As WiFi is popular wireless communication technology, a lot of APs (Access Points) are deployed in building. For example, average of observable APs on a scan is about 36.8 in Seoul station located in South Korea. Thus, WIFi may be a good source of estimating position due to its technological infrastructure. WiFi fingerprinting schemes has a good performance when it comes to performing positioning at initial site survey moment. Localization accuracy depends on radio map similarity of positioning moment. Therefore, continuous survey of radio map is required to accurate localization. In this paper, motivated by these limitation, we suggest crowdsourcing based WiFi radio map management system. Users observe WiFi APs information to estimating position and transfer the fingerprint (estimated position and corresponding AP information) to fingerprint management server. Then, the server manages reported fingerprints to add/delete/change to radio map. Because management of fingerprints is based on estimated position, however, the radio map could be polluted by un-accurate position. Therefore, we adapt landmark by using magnetic field sequence to calibrate users position. Moreover, PDR (Pedestrian dead-reckoning) trajectory coordinates reported by user are used to scoring quality of radio map. Finally, our system reduce the cost of continuous site survey.์ œ 1์žฅ ์„œ ๋ก  8 ์ œ 1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 8 ์ œ 2์ ˆ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 13 ์ œ 2์žฅ WiFi ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๋ถ„์„ 14 ์ œ 1์ ˆ ๋น„์ปจ ํ”„๋ ˆ์ž„ 14 ์ œ 2์ ˆ ๋ฌด์„  ์‹ ํ˜ธ ์†์‹ค 14 ์ œ 3์ ˆ ๋ฌธ์ œ ์ •์˜ ๋ฐ ํ•ด๊ฒฐ 18 ์ œ 3์žฅ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๊ธฐ๋ฐ˜ ๋ผ๋””์˜ค๋งต ๊ด€๋ฆฌ ์‹œ์Šคํ…œ 20 ์ œ 1์ ˆ ๊ตฌ์กฐ ๋ฐ ์‹œ์Šคํ…œ 20 1. ์ดˆ๊ธฐ ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• 20 2. ํด๋ผ์ด์–ธํŠธ 21 3. ์„œ๋ฒ„ 23 ์ œ 2์ ˆ ์ธก์œ„ ํ™˜๊ฒฝ ๋ณ€ํ™” ๊ฐ์ง€ 23 4. AP ์ œ๊ฑฐ ๊ฐ์ง€ 26 5. AP ๋ณ€ํ™” ๊ฐ์ง€ 27 ์ œ 3์ ˆ ๋žœ๋“œ๋งˆํฌ๋ฅผ ์ด์šฉํ•œ ์—๋Ÿฌ ๋ณด์ • 28 ์ œ 4์ ˆ ๋ผ๋””์˜ค๋งต ํ’ˆ์งˆ ์ถ”์ • 30 ์ œ 4์žฅ ์‹œ์Šคํ…œ ๋ถ„์„ ๋ฐ ํ‰๊ฐ€ 33 ์ œ 1์ ˆ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ 33 ์ œ 2์ ˆ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์„ค์ • 34 1. ์ดˆ๊ธฐ ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• 34 2. ์ด๋™ ๋ฐ ์„ผ์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 34 3. AP ์ถ”๊ฐ€/์ œ๊ฑฐ/๋ณ€ํ™” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 35 ์ œ 3์ ˆ ์„ฑ๋Šฅ ํ‰๊ฐ€ 36 1. ๋žœ๋“œ๋งˆํฌ ํšจ์šฉ์„ฑ 36 2. AP ์–‘์ƒ ๋ณ€ํ™” ๊ฐ์ง€ ์„ฑ๋Šฅ 38 3. ๋ผ๋””์˜ค๋งต ํ’ˆ์งˆ ์ถ”์ • ์„ฑ๋Šฅ 41 ์ œ 5์žฅ ๊ฒฐ ๋ก  43 ์ฐธ๊ณ  ๋ฌธํ—Œ 44 Abstract 47Maste

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์ด์šฉํ•œ ๋น„์šฉ ํšจ์œจ์ ์ด๊ณ  ์‹ค์šฉ์ ์ธ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ๊ถŒํƒœ๊ฒฝ.์ง€๋‚œ ์‹ญ์ˆ˜ ๋…„ ๋™์•ˆ ํ•™๊ณ„์™€ ์‚ฐ์—… ์˜์—ญ์„ ๋ง‰๋ก ํ•˜์—ฌ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์ด ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค. ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•  ๋•Œ WiFi, Bluetooth, ๊ด€์„ฑ ์„ผ์„œ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์„ผ์„œ๋‚˜ ๋ฌด์„  ์ธํ„ฐํŽ˜์ด์Šค๋“ค์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ๊ทธ ์ค‘์—์„œ๋„ ์ง€์ž๊ธฐ ์„ผ์„œ์—์„œ ์ธก์ •ํ•œ ์ž๊ธฐ์žฅ์˜ ํŒจํ„ด์„ ์ธก์œ„์— ์‚ฌ์šฉํ•˜๋Š” ์‹œ์Šคํ…œ์€ ์ •ํ™•์„ฑ๊ณผ ์•ˆ์ •์„ฑ ์ธก๋ฉด์—์„œ ํƒ€ ์‹œ์Šคํ…œ์— ๋น„ํ•ด ํฐ ์žฅ์ ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋‹ค. ์ฒ ๊ณจ ๊ตฌ์กฐ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ฑด์ถ•๋œ ํ˜„๋Œ€ ๊ฑด์ถ•๋ฌผ๋“ค์˜ ์‹ค๋‚ด ๊ณต๊ฐ„์—๋Š” ์ง€์ž๊ธฐ์žฅ์˜ ์™œ๊ณก์ด ๋ฐœ์ƒํ•˜๋ฉฐ ์ด๋Š” ๊ณง ์‹ค๋‚ด์˜ ๊ฐœ๋ณ„ ๊ณต๊ฐ„๋“ค์— ๊ณ ์œ ํ•˜๊ณ  ์•ˆ์ •์ ์ธ ์ง€์ž๊ธฐ ํŒจํ„ด์„ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ์ด๋ฅผ ์‹ค๋‚ด ์ธก์œ„์˜ ๋งฅ๋ฝ์—์„œ๋Š” ์ง€์ž๊ธฐ ์ง€๋ฌธ์ด๋ผ๊ณ  ์ •์˜ํ•˜๋Š”๋ฐ ์ด ์ง€์ž๊ธฐ ์ง€๋ฌธ์€ ์‚ฌ์šฉ์ž์˜ ์›€์ง์ž„, ๋ฌธ๊ณผ ์ฐฝ๋ฌธ์˜ ์—ฌ๋‹ซํž˜ ๋“ฑ๊ณผ ๊ฐ™์€ ์ผ์ƒ์ ์ธ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๊ฐ•๊ฑดํ•˜๋ฉฐ, ํŠนํžˆ WiFi ๋“ฑ ๋ฌด์„  ์‹ ํ˜ธ์™€ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ๋†’์€ ์ˆ˜์ค€์˜ ์•ˆ์ •์„ฑ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด์™€ ๊ฐ™์€ ์•ˆ์ •์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•  ๋•Œ์—๋Š” ๋ช‡๊ฐ€์ง€ ๊ณ ๋ คํ•ด์•ผํ•  ์‚ฌํ•ญ๋“ค์ด ์žˆ๋‹ค. ๋จผ์ € ์ง€์ž๊ธฐ ์ง€๋ฌธ์€ ์„ผ์„œ ๋ฐ์ดํ„ฐ์˜ ๋‚ฎ์€ ์ฐจ์› ๊ฐœ์ˆ˜๋กœ ์ธํ•˜์—ฌ AP ๊ฐœ์ˆ˜์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ์˜ ์ฐจ์›์ด ์ˆ˜์‹ญ, ์ˆ˜๋ฐฑ๊ฐœ์— ๋‹ฌํ•˜๋Š” ๋ฌด์„  ์‹ ํ˜ธ์— ๋น„ํ•˜์—ฌ ๊ตฌ๋ณ„์„ฑ์ด ๋งค์šฐ ๋‚ฎ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋งŽ์€ ์–‘์˜ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ณต์žกํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋งŽ์€ ์„ผ์„œ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋ฅผ ๊ทน๋ณตํ•˜์˜€๋‹ค. ๋˜ ๋Œ€์ƒ ๊ณต๊ฐ„์˜ ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•œ ์‚ฌ์ „ ์กฐ์‚ฌ ๋น„์šฉ๊ณผ ์ฃผ๊ธฐ์ ์ธ ์ง€์ž๊ธฐ ์ง€๋ฌธ ์žฌ์ˆ˜์ง‘์— ๋“œ๋Š” ๊ด€๋ฆฌ ๋น„์šฉ ์—ญ์‹œ ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์‚ฌ์šฉํ•  ๋•Œ ๊ณ ๋ คํ•ด์•ผํ•  ๋ฌธ์ œ์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์€ ์ด ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์ž‘์„ฑ๋˜์—ˆ๋‹ค. ๋จผ์ € ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท (IoT, Internet of Things) ํ™˜๊ฒฝ์—์„œ ์‹ค๋‚ด ์ธก์œ„๋ฅผ ์œ„ํ•ด ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ํ™œ์šฉํ•˜๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๊ฒฝ๋Ÿ‰ ์‹œ์Šคํ…œ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. BLE ์ธํ„ฐํŽ˜์ด์Šค์™€ ์„ผ์„œ 2๊ฐœ(์ง€์ž๊ธฐ ๋ฐ ๊ฐ€์†๋„๊ณ„)๋งŒ ํƒ‘์žฌํ•œ ์ƒˆ๋กœ์šด ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ์ด ๊ธฐ๊ธฐ๋Š” ์ฝ”์ธ ํฌ๊ธฐ์˜ ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ 1๋…„ ๋™์•ˆ ๋™์ž‘ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ตœ์†Œํ•œ์˜ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋งŒ์„ ์ด์šฉํ•˜์—ฌ ๊ฐ•๊ฑดํ•œ ์‚ฌ์šฉ์ž ๋ณดํ–‰ ๋ชจ๋ธ๊ณผ ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋„์ž…ํ•œ ํŒŒํ‹ฐํด ํ•„ํ„ฐ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ง์ ‘ ์„ค๊ณ„ํ•œ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท ๊ธฐ๊ธฐ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, ๋ณธ ์‹œ์Šคํ…œ์€ ๋‚ฎ์€ ๊ณ„์‚ฐ ๋ณต์žก์„ฑ๊ณผ ๋†’์€ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๋ณด์—ฌ์ฃผ๋ฉด์„œ ์ผ๋ฐ˜์ ์ธ ์‚ฌ๋ฌด์‹ค ๊ณต๊ฐ„์— ๋Œ€ํ•˜์—ฌ ํ‰๊ท  1.62m์˜ ์ธก์œ„ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ๋Š” ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๋ฐฉ์‹์„ ํ™œ์šฉํ•˜๋Š” ์ง€์ž๊ธฐ ์ง€๋ฌธ ๊ธฐ๋ฐ˜์˜ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹ค๋‚ด ์ธก์œ„์˜ ๋งฅ๋ฝ์—์„œ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ์€ ๋ช…์‹œ์ ์ธ ๋Œ€์ƒ ๊ณต๊ฐ„์˜ ์‚ฌ์ „ ์กฐ์‚ฌ ๊ณผ์ • ์—†์ด ์ง€์ž๊ธฐ ์ง€๋ฌธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ง€๋‚œ ์‹ญ์ˆ˜๋…„ ๊ฐ„ ์‹ค๋‚ด ์ธก์œ„ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•ด ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๋ฐฉ๋ฒ•๋ก ์ด ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด ์™”์œผ๋‚˜, ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ์— ๊ธฐ๋ฐ˜ํ•œ ๊ธฐ์กด ์ธก์œ„ ์‹œ์Šคํ…œ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์ „ ์กฐ์‚ฌ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ๋ณด๋‹ค ์œ„์น˜ ์ •ํ™•๋„๊ฐ€ ๋‚ฎ๊ฒŒ ์ธก์ •๋˜์–ด์™”๋‹ค. ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…์˜ ๋‚ฎ์€ ์ธก์œ„ ์„ฑ๋Šฅ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง€์ž๊ธฐ ๊ธฐ๋ฐ˜ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ช…์‹œ์ ์ธ ์ˆ˜์ง‘ ๊ณผ์ • ์—†์ด ์Šค๋งˆํŠธํฐ ์‚ฌ์šฉ์ž๊ฐ€ ์ผ์ƒ์ƒํ™œ์—์„œ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ง€์ž๊ธฐ ์ง€๋ฌธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก HMM ๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ํ•™์Šต ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ์ฃผ๋กœ ๋ณต๋„ ์œ„์ฃผ๋กœ ๊ตฌ์„ฑ๋œ ์‹ค๋‚ด ๊ณต๊ฐ„์—์„œ์˜ ํ‰๊ฐ€ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ์ด 96.47\%์˜ ํ•™์Šต ์ •ํ™•๋„์™€ 0.25m์˜ ์ค‘๊ฐ„๊ฐ’ ์ธก์œ„ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.Over the decades, indoor localization system has been widely studied in the academic and also in the industrial area. Many sensors or wireless signals such as WiFi, Bluetooth, and inertial sensors are available when designing an indoor localization system, but among them, the systems using the geomagnetic field has advantages concerning accuracy and stability. Every spatial point in an indoor space has its own distinct and stable fingerprint, which arises owing to the distortion of the magnetic field induced by the surrounding steel and iron structures. The magnetic fingerprint is robust to environmental changes like pedestrian activities and door/window movements, particularly compared with radio signals such as WiFi. This phenomenon makes many indoor positioning techniques rely on the magnetic field as an essential source of localization. Despite the robustness, there are some challenges when leveraging the magnetic fingerprint to design the indoor localization system. Due to lower discernibility of the magnetic fingerprint, most of the existing studies have exploited high computational algorithms and many sensors. Also, the cost of a site survey to collect the fingerprints and periodic management of target spaces is still problematic when using magnetic fingerprints. This dissertation thus focuses on these two challenges. First, we present an energy-efficient and lightweight system that utilizes the magnetic field for indoor positioning in the Internet of Things (IoT) environments. We propose a new hardware design of an IoT device that only has a BLE interface and two sensors (magnetometer and accelerometer), with the lifetime of one year when using a coin-size battery. We further propose an augmented particle filter framework that features a robust motion model and algorithmic-efficient localization heuristics with minimal sensory data. The prototype-based evaluation shows that the proposed system achieves a median accuracy of 1.62 m for an office building while exhibiting low computational complexity and high energy efficiency. Next, we propose a magnetic fingerprint-based indoor localization system leveraging a crowdsourcing approach. In the aspect of indoor localization, crowdsourcing is a method to construct the fingerprint database without the explicit site-survey process. Over the past decade, crowdsourcing has been actively studied for indoor localization. However, the existing localization systems based on crowdsourcing usually achieve lower location accuracy than the site survey based systems. To overcome the low performance of the crowdsourcing based approaches, we design an indoor positioning system using the crowdsourced data of the magnetic field. We substantiate a novel HMM-based learning model to construct a database of magnetic field fingerprints from smartphone users. Experiments in an indoor space consisting of aisles show that the proposed system achieves the learning accuracy of 96.47\% and median positioning accuracy of 0.25m.Chapter 1 Introduction 1p - Motivation 1p - Indoor Localization Overview 2p - Magnetic Field based Systems 5p - Organization of Dissertation 7p Chapter 2 An Energy-efficient and Lightweight Indoor Localization System for Internet-of-Things (IoT) Environments 8p - Introduction 8p - Related Work 11p - Issues on Using Magnetic Field 12p - Characteristics of Magnetic Field 12p - Variation Issues 13p - Sensing Rate 17p - Design of Energy-efficient Device for Localization 18p - Hardware Design 18p - Structure of the BLE Beacon Frame 21p - Processing Sensor Data 22p - System Architecture 25p - Overview 25p - Site Survey Methodology 25p - Particle Filter Framework 26p - Evaluation 36p - Implementation 37p - Experiment Setup 38p - Localization Performance 38p - Energy and Algorithmic Efficiency 44p - Discussion 46p Chapter 3 Magnetic Field based Indoor Localization System:A Crowdsourcing Approach 51p - Introduction 51p - Characteristics of Magnetic Field 54p - Robustness 54p - Distinctness 54p - Diversity issues 55p - Design of HMM for Crowdsoucing 56p - Basic Model 56p - Issues in HMM Learning 59p - Preliminary Experiments 59p - System Architecture 63p - Enhanced Learning Model 63p - Pre-processing Crowdsourced Data 65p - Allocating Initial HMM Parameters 67p - Comparing Similarity between the Magnetic Fingerprints 70p - Evaluation 71p - Experimental Settings 71p - Learning Accuracy 71p - Positioning Accuracy 73p - Algorithmic Efficiency 75p Chapter 4 Discussion and Future Work 76p - Open Space Issue 76p Chapter 5 Conclusion 82p Bibliography 84p ์ดˆ๋ก 92pDocto
    corecore