63,002 research outputs found

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin

    Combining depth and intensity images to produce enhanced object detection for use in a robotic colony

    Get PDF
    Robotic colonies that can communicate with each other and interact with their ambient environments can be utilized for a wide range of research and industrial applications. However amongst the problems that these colonies face is that of the isolating objects within an environment. Robotic colonies that can isolate objects within the environment can not only map that environment in de-tail, but interact with that ambient space. Many object recognition techniques ex-ist, however these are often complex and computationally expensive, leading to overly complex implementations. In this paper a simple model is proposed to isolate objects, these can then be recognize and tagged. The model will be using 2D and 3D perspectives of the perceptual data to produce a probability map of the outline of an object, therefore addressing the defects that exist with 2D and 3D image techniques. Some of the defects that will be addressed are; low level illumination and objects at similar depths. These issues may not be completely solved, however, the model provided will provide results confident enough for use in a robotic colony

    Application of spectral and spatial indices for specific class identification in Airborne Prism EXperiment (APEX) imaging spectrometer data for improved land cover classification

    Get PDF
    Hyperspectral remote sensing's ability to capture spectral information of targets in very narrow bandwidths gives rise to many intrinsic applications. However, the major limiting disadvantage to its applicability is its dimensionality, known as the Hughes Phenomenon. Traditional classification and image processing approaches fail to process data along many contiguous bands due to inadequate training samples. Another challenge of successful classification is to deal with the real world scenario of mixed pixels i.e. presence of more than one class within a single pixel. An attempt has been made to deal with the problems of dimensionality and mixed pixels, with an objective to improve the accuracy of class identification. In this paper, we discuss the application of indices to cope with the disadvantage of the dimensionality of the Airborne Prism EXperiment (APEX) hyperspectral Open Science Dataset (OSD) and to improve the classification accuracy using the Possibilistic c–Means (PCM) algorithm. This was used for the formulation of spectral and spatial indices to describe the information in the dataset in a lesser dimensionality. This reduced dimensionality is used for classification, attempting to improve the accuracy of determination of specific classes. Spectral indices are compiled from the spectral signatures of the target and spatial indices have been defined using texture analysis over defined neighbourhoods. The classification of 20 classes of varying spatial distributions was considered in order to evaluate the applicability of spectral and spatial indices in the extraction of specific class information. The classification of the dataset was performed in two stages; spectral and a combination of spectral and spatial indices individually as input for the PCM classifier. In addition to the reduction of entropy, while considering a spectral-spatial indices approach, an overall classification accuracy of 80.50% was achieved, against 65% (spectral indices only) and 59.50% (optimally determined principal component
    corecore