34,745 research outputs found

    Toward optimal multi-objective models of network security: Survey

    Get PDF
    Information security is an important aspect of a successful business today. However, financial difficulties and budget cuts create a problem of selecting appropriate security measures and keeping networked systems up and running. Economic models proposed in the literature do not address the challenging problem of security countermeasure selection. We have made a classification of security models, which can be used to harden a system in a cost effective manner based on the methodologies used. In addition, we have specified the challenges of the simplified risk assessment approaches used in the economic models and have made recommendations how the challenges can be addressed in order to support decision makers

    Towards optimal multi-objective models of network security: survey

    Get PDF
    Information security is an important aspect of a successful business today. However, financial difficulties and budget cuts create a problem of selecting appropriate security measures and keeping networked systems up and running. Economic models proposed in the literature do not address the challenging problem of security countermeasure selection. We have made a classification of security models, which can be used to harden a system in a cost effective manner based on the methodologies used. In addition, we have specified the challenges of the simplified risk assessment approaches used in the economic models and have made recommendations how the challenges can be addressed in order to support decision makers

    Data mining based cyber-attack detection

    Get PDF

    ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System

    Full text link
    Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: the external intruders who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. Due to the fact that it is more and more improbable to a system administrator to recognize and manually intervene to stop an attack, there is an increasing recognition that ID systems should have a lot to earn on following its basic principles on the behavior of complex natural systems, namely in what refers to self-organization, allowing for a real distributed and collective perception of this phenomena. With that aim in mind, the present work presents a self-organized ant colony based intrusion detection system (ANTIDS) to detect intrusions in a network infrastructure. The performance is compared among conventional soft computing paradigms like Decision Trees, Support Vector Machines and Linear Genetic Programming to model fast, online and efficient intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special track at WSTST 2005, Muroran, JAPA

    Dynamic deployment of context-aware access control policies for constrained security devices

    Get PDF
    Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages
    • 

    corecore