10,744 research outputs found

    Extended Rate, more GFUN

    Get PDF
    We present a software package that guesses formulae for sequences of, for example, rational numbers or rational functions, given the first few terms. We implement an algorithm due to Bernhard Beckermann and George Labahn, together with some enhancements to render our package efficient. Thus we extend and complement Christian Krattenthaler's program Rate, the parts concerned with guessing of Bruno Salvy and Paul Zimmermann's GFUN, the univariate case of Manuel Kauers' Guess.m and Manuel Kauers' and Christoph Koutschan's qGeneratingFunctions.m.Comment: 26 page

    A probabilistic algorithm to test local algebraic observability in polynomial time

    Get PDF
    The following questions are often encountered in system and control theory. Given an algebraic model of a physical process, which variables can be, in theory, deduced from the input-output behavior of an experiment? How many of the remaining variables should we assume to be known in order to determine all the others? These questions are parts of the \emph{local algebraic observability} problem which is concerned with the existence of a non trivial Lie subalgebra of the symmetries of the model letting the inputs and the outputs invariant. We present a \emph{probabilistic seminumerical} algorithm that proposes a solution to this problem in \emph{polynomial time}. A bound for the necessary number of arithmetic operations on the rational field is presented. This bound is polynomial in the \emph{complexity of evaluation} of the model and in the number of variables. Furthermore, we show that the \emph{size} of the integers involved in the computations is polynomial in the number of variables and in the degree of the differential system. Last, we estimate the probability of success of our algorithm and we present some benchmarks from our Maple implementation.Comment: 26 pages. A Maple implementation is availabl

    A Fast Algorithm for Computing the p-Curvature

    Get PDF
    We design an algorithm for computing the pp-curvature of a differential system in positive characteristic pp. For a system of dimension rr with coefficients of degree at most dd, its complexity is \softO (p d r^\omega) operations in the ground field (where ω\omega denotes the exponent of matrix multiplication), whereas the size of the output is about pdr2p d r^2. Our algorithm is then quasi-optimal assuming that matrix multiplication is (\emph{i.e.} ω=2\omega = 2). The main theoretical input we are using is the existence of a well-suited ring of series with divided powers for which an analogue of the Cauchy--Lipschitz Theorem holds.Comment: ISSAC 2015, Jul 2015, Bath, United Kingdo

    Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart

    Full text link
    The solution of a Caputo time fractional diffusion equation of order 0<α<10<\alpha<1 is expressed in terms of the solution of a corresponding integer order diffusion equation. We demonstrate a linear time mapping between these solutions that allows for accelerated computation of the solution of the fractional order problem. In the context of an NN-point finite difference time discretisation, the mapping allows for an improvement in time computational complexity from O(N2)O\left(N^2\right) to O(Nα)O\left(N^\alpha\right), given a precomputation of O(N1+αln⁥N)O\left(N^{1+\alpha}\ln N\right). The mapping is applied successfully to the least-squares fitting of a fractional advection diffusion model for the current in a time-of-flight experiment, resulting in a computational speed up in the range of one to three orders of magnitude for realistic problem sizes.Comment: 9 pages, 5 figures; added references for section

    Fast Computation of Common Left Multiples of Linear Ordinary Differential Operators

    Full text link
    We study tight bounds and fast algorithms for LCLMs of several linear differential operators with polynomial coefficients. We analyze the arithmetic complexity of existing algorithms for LCLMs, as well as the size of their outputs. We propose a new algorithm that recasts the LCLM computation in a linear algebra problem on a polynomial matrix. This algorithm yields sharp bounds on the coefficient degrees of the LCLM, improving by one order of magnitude the best bounds obtained using previous algorithms. The complexity of the new algorithm is almost optimal, in the sense that it nearly matches the arithmetic size of the output.Comment: The final version will appear in Proceedings of ISSAC 201

    Low Complexity Algorithms for Linear Recurrences

    Get PDF
    We consider two kinds of problems: the computation of polynomial and rational solutions of linear recurrences with coefficients that are polynomials with integer coefficients; indefinite and definite summation of sequences that are hypergeometric over the rational numbers. The algorithms for these tasks all involve as an intermediate quantity an integer NN (dispersion or root of an indicial polynomial) that is potentially exponential in the bit size of their input. Previous algorithms have a bit complexity that is at least quadratic in NN. We revisit them and propose variants that exploit the structure of solutions and avoid expanding polynomials of degree NN. We give two algorithms: a probabilistic one that detects the existence or absence of nonzero polynomial and rational solutions in O(Nlog⁥2N)O(\sqrt{N}\log^{2}N) bit operations; a deterministic one that computes a compact representation of the solution in O(Nlog⁥3N)O(N\log^{3}N) bit operations. Similar speed-ups are obtained in indefinite and definite hypergeometric summation. We describe the results of an implementation.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistributio

    Probing higher spin black holes from CFT

    Full text link
    In a class of 2D CFTs with higher spin symmetry, we compute thermal two-point functions of certain scalar primary operators in the presence of nonzero chemical potential for higher spin charge. These are shown to agree with the same quantity calculated holographically using scalar fields propagating in a charged black hole background of 3D higher spin gravity. This match serves as further evidence for the duality between W_N minimal models at large central charge and 3D higher spin gravity. It also supports a recent prescription for computing boundary correlators of multi-trace scalar primary operators in higher spin theories.Comment: 34 pages, 1 figur
    • 

    corecore