529 research outputs found

    Capacity-achieving ensembles for the binary erasure channel with bounded complexity

    Full text link
    We present two sequences of ensembles of non-systematic irregular repeat-accumulate codes which asymptotically (as their block length tends to infinity) achieve capacity on the binary erasure channel (BEC) with bounded complexity per information bit. This is in contrast to all previous constructions of capacity-achieving sequences of ensembles whose complexity grows at least like the log of the inverse of the gap (in rate) to capacity. The new bounded complexity result is achieved by puncturing bits, and allowing in this way a sufficient number of state nodes in the Tanner graph representing the codes. We also derive an information-theoretic lower bound on the decoding complexity of randomly punctured codes on graphs. The bound holds for every memoryless binary-input output-symmetric channel and is refined for the BEC.Comment: 47 pages, 9 figures. Submitted to IEEE Transactions on Information Theor

    Efficient Near Maximum-Likelihood Efficient Near Maximum-Likelihood Reliability-Based Decoding for Short LDPC Codes

    Full text link
    In this paper, we propose an efficient decoding algorithm for short low-density parity check (LDPC) codes by carefully combining the belief propagation (BP) decoding and order statistic decoding (OSD) algorithms. Specifically, a modified BP (mBP) algorithm is applied for a certain number of iterations prior to OSD to enhance the reliability of the received message, where an offset parameter is utilized in mBP to control the weight of the extrinsic information in message passing. By carefully selecting the offset parameter and the number of mBP iterations, the number of errors in the most reliable positions (MRPs) in OSD can be reduced, thereby significantly improving the overall decoding performance of error rate and complexity. Simulation results show that the proposed algorithm can approach the maximum-likelihood decoding (MLD) for short LDPC codes with only a slight increase in complexity compared to BP and a significant decrease compared to OSD. Specifically, the order-(m-1) decoding of the proposed algorithm can achieve the performance of the order-m OSD

    Modeling and Energy Optimization of LDPC Decoder Circuits with Timing Violations

    Full text link
    This paper proposes a "quasi-synchronous" design approach for signal processing circuits, in which timing violations are permitted, but without the need for a hardware compensation mechanism. The case of a low-density parity-check (LDPC) decoder is studied, and a method for accurately modeling the effect of timing violations at a high level of abstraction is presented. The error-correction performance of code ensembles is then evaluated using density evolution while taking into account the effect of timing faults. Following this, several quasi-synchronous LDPC decoder circuits based on the offset min-sum algorithm are optimized, providing a 23%-40% reduction in energy consumption or energy-delay product, while achieving the same performance and occupying the same area as conventional synchronous circuits.Comment: To appear in IEEE Transactions on Communication
    • …
    corecore