423 research outputs found

    Efficient k-anonymous microaggregation of multivariate numerical data via principal component analysis

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/k-Anonymous microaggregation is a widespread technique to address the problem of protecting the privacy of the respondents involved beyond the mere suppression of their identifiers, in applications where preserving the utility of the information disclosed is critical. Unfortunately, microaggregation methods with high data utility may impose stringent computational demands when dealing with datasets containing a large number of records and attributes. This work proposes and analyzes various anonymization methods which draw upon the algebraic-statistical technique of principal component analysis (PCA), in order to effectively reduce the number of attributes processed, that is, the dimension of the multivariate microaggregation problem at hand. By preserving to a high degree the energy of the numerical dataset and carefully choosing the number of dominant components to process, we manage to achieve remarkable reductions in running time and memory usage with negligible impact in information utility. Our methods are readily applicable to high-utility SDC of large-scale datasets with numerical demographic attributes.Peer ReviewedPostprint (author's final draft

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    A Unifying review of linear gaussian models

    Get PDF
    Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model.We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models

    Mathematically optimized, recursive prepartitioning strategies for k-anonymous microaggregation of large-scale datasets

    Get PDF
    © Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The technical contents of this work fall within the statistical disclosure control (SDC) field, which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating respondents. A widely known technique to solve the problem of protecting the privacy of the respondents involved beyond the mere suppression of their identifiers is the k-anonymous microaggregation. Unfortunately, most microaggregation algorithms that produce competitively low levels of distortions exhibit a superlinear running time, typically scaling with the square of the number of records in the dataset. This work proposes and analyzes an optimized prepartitioning strategy to reduce significantly the running time for the k-anonymous microaggregation algorithm operating on large datasets, with mild loss in data utility with respect to that of MDAV, the underlying method. The optimization strategy is based on prepartitioning a dataset recursively until the desired k-anonymity parameter is achieved. Traditional microaggregation algorithms have quadratic computational complexity in the form T(n2). By using the proposed method and fixing the number of recurrent prepartitions we obtain subquadratic complexity in the form T(n3/2), T(n4/3), ..., depending on the number of prepartitions. Alternatively, fixing the ratio between the size of the microcell and the macrocell on each prepartition, quasilinear complexity in the form T(nlog¿n) is achieved. Our method is readily applicable to large-scale datasets with numerical demographic attributes.Peer ReviewedPostprint (author's final draft

    Nonlinear Pricing with Finite Information

    Get PDF
    We analyze nonlinear pricing with finite information. We consider a multi-product environment where each buyer has preferences over a d-dimensional variety of goods. The seller is limited to offering a finite number n of d-dimensional choices. The limited menu reflects a finite communication capacity between the buyer and seller. We identify necessary conditions that the optimal finite menu must satisfy, for either the socially efficient or the revenue-maximizing mechanism. These conditions require that information be bundled, or quantized, optimally. We introduce vector quantization and establish that the losses due to finite menus converge to zero at a rate of 1/n2/d. In the canonical model with one-dimensional products and preferences, this establishes that the loss resulting from using the n-item menu converges to zero at a rate proportional to 1/n2

    Incremental k-Anonymous microaggregation in large-scale electronic surveys with optimized scheduling

    Get PDF
    Improvements in technology have led to enormous volumes of detailed personal information made available for any number of statistical studies. This has stimulated the need for anonymization techniques striving to attain a difficult compromise between the usefulness of the data and the protection of our privacy. k-Anonymous microaggregation permits releasing a dataset where each person remains indistinguishable from other k–1 individuals, through the aggregation of demographic attributes, otherwise a potential culprit for respondent reidentification. Although privacy guarantees are by no means absolute, the elegant simplicity of the k-anonymity criterion and the excellent preservation of information utility of microaggregation algorithms has turned them into widely popular approaches whenever data utility is critical. Unfortunately, high-utility algorithms on large datasets inherently require extensive computation. This work addresses the need of running k-anonymous microaggregation efficiently with mild distortion loss, exploiting the fact that the data may arrive over an extended period of time. Specifically, we propose to split the original dataset into two portions that will be processed subsequently, allowing the first process to start before the entire dataset is received, while leveraging the superlinearity of the microaggregation algorithms involved. A detailed mathematical formulation enables us to calculate the optimal time for the fastest anonymization, as well as for minimum distortion under a given deadline. Two incremental microaggregation algorithms are devised, for which extensive experimentation is reported. The theoretical methodology presented should prove invaluable in numerous data-collection applications, including largescale electronic surveys in which computation is possible as the data comes in.Peer ReviewedPostprint (published version

    Privacy Preserving Clustering In Data Mining

    Get PDF
    Huge volume of detailed personal data is regularly collected and sharing of these data is proved to be beneficial for data mining application. Such data include shopping habits, criminal records, medical history, credit records etc .On one hand such data is an important asset to business organization and governments for decision making by analyzing it .On the other hand privacy regulations and other privacy concerns may prevent data owners from sharing information for data analysis. In order to share data while preserving privacy data owner must come up with a solution which achieves the dual goal of privacy preservation as well as accurate clustering result. Trying to give solution for this we implemented vector quantization approach piecewise on the datasets which segmentize each row of datasets and quantization approach is performed on each segment using K means which later are again united to form a transformed data set. Some experimental results are presented which tries to finds the optimum value of segment size and quantization parameter which gives optimum in the tradeoff between clustering utility and data privacy in the input dataset
    corecore