3 research outputs found

    A model-based strategy for mapping human grasps to robotic hands using synergies

    No full text
    The aim of this paper is to derive the synergies subspace of an anthropomorphic robotic hand using the human hand as a master. A set of grasping postures performed by five subjects in grasping commonly used objects has been mapped to a robotic hand assuming its own kinematics as a simplified model of the human hand. Using an RGB camera and depth sensor for 3D motion capture, the human hand palm pose and fingertip positions have been measured for the reference set of grasping. From the measured fingertip positions a closed-loop inverse kinematics algorithm has been applied to reproduce the joint space configuration of the robotic hand relying on its kinematics, scaled using the human and robotic fingers length ratio. Once the set of grasping has been mapped on the robotic hand, the synergies subspace has been computed applying principal component analysis on the joint configurations. The obtained subspace is tested with experiments on the DEXMART Hand by performing reach to grasp actions on selected objects using the first three predominant synergies. The analysis of these synergies and a comparison with the results on the human hand available in the literature are performed by means of graphical and numerical tools. \ua9 2013 IEEE

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France
    corecore