6 research outputs found

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    Distributed Clock Parameters Tracking in Wireless Sensor Network

    Get PDF
    Clock parameters (skew and offset) in sensor net- work are inherently time-varying due to imperfect oscillator circuits. This paper develops a distributed Kalman filter for clock parameters tracking. The proposed algorithm only requires each node to exchange limited information with its direct neighbors, thus is energy efficient, scalable with network size, and is robust to changes in network connectivity. A low-complexity distributed algorithm based on Coordinate-Descent with Bootstrap (CD-BS) is also proposed to provide rapid initialization to the tracking algorithm. Simulation results show that the performance of the proposed distributed tracking algorithm maintains long-term clock parameters accuracy close to the Bayesian Cramer-Rao Lower Bound.published_or_final_versio

    Timing Synchronization and Node Localization in Wireless Sensor Networks: Efficient Estimation Approaches and Performance Bounds

    Get PDF
    Wireless sensor networks (WSNs) consist of a large number of sensor nodes, capable of on-board sensing and data processing, that are employed to observe some phenomenon of interest. With their desirable properties of flexible deployment, resistance to harsh environment and lower implementation cost, WSNs envisage a plethora of applications in diverse areas such as industrial process control, battle- field surveillance, health monitoring, and target localization and tracking. Much of the sensing and communication paradigm in WSNs involves ensuring power efficient transmission and finding scalable algorithms that can deliver the desired performance objectives while minimizing overall energy utilization. Since power is primarily consumed in radio transmissions delivering timing information, clock synchronization represents an indispensable requirement to boost network lifetime. This dissertation focuses on deriving efficient estimators and performance bounds for the clock parameters in a classical frequentist inference approach as well as in a Bayesian estimation framework. A unified approach to the maximum likelihood (ML) estimation of clock offset is presented for different network delay distributions. This constitutes an analytical alternative to prior works which rely on a graphical maximization of the likelihood function. In order to capture the imperfections in node oscillators, which may render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed by using factor graphs. Message passing using the max-product algorithm yields an exact expression for the Bayesian inference problem. This extends the current literature to cases where the clock offset is not deterministic, but is in fact a random process. A natural extension of pairwise synchronization is to develop algorithms for the more challenging case of network-wide synchronization. Assuming exponentially distributed random delays, a network-wide clock synchronization algorithm is proposed using a factor graph representation of the network. Message passing using the max- product algorithm is adopted to derive the update rules for the proposed iterative procedure. A closed form solution is obtained for each node's belief about its clock offset at each iteration. Identifying the close connections between the problems of node localization and clock synchronization, we also address in this dissertation the problem of joint estimation of an unknown node's location and clock parameters by incorporating the effect of imperfections in node oscillators. In order to alleviate the computational complexity associated with the optimal maximum a-posteriori estimator, two iterative approaches are proposed as simpler alternatives. The first approach utilizes an Expectation-Maximization (EM) based algorithm which iteratively estimates the clock parameters and the location of the unknown node. The EM algorithm is further simplified by a non-linear processing of the data to obtain a closed form solution of the location estimation problem using the least squares (LS) approach. The performance of the estimation algorithms is benchmarked by deriving the Hybrid Cramer-Rao lower bound (HCRB) on the mean square error (MSE) of the estimators. We also derive theoretical lower bounds on the MSE of an estimator in a classical frequentist inference approach as well as in a Bayesian estimation framework when the likelihood function is an arbitrary member of the exponential family. The lower bounds not only serve to compare various estimators in our work, but can also be useful in their own right in parameter estimation theory
    corecore