38,390 research outputs found

    An enhanced fresh cadaveric model for reconstructive microsurgery training

    Get PDF
    Open access via Springer Compact Acknowledgements The generosity of the people of the North East of Scotland who donated their bodies to the University of Aberdeen for anatomical study is recognised. Their contribution is appreciated and valued. Funding The authors received no financial support for the research, authorship, and/or publication of this article.Peer reviewedPublisher PD

    Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research.

    Get PDF
    AimTo evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training.MethodsTwo 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated.ResultsThe 3D aneurysm models were successfully implanted to the cadaveric specimens' arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation.Conclusion3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research

    How robotic surgery is changing our understanding of anatomy

    Get PDF
    The most recent revolution in our understanding and knowledge of the human body is the introduction of new technologies allowing direct magnified vision of internal organs, as in laparoscopy and robotics. The possibility of viewing an anatomical detail, until now not directly visible during open surgical operations and only partially during dissections of cadavers, has created a 'new surgical anatomy'. Consequent refinements of operative techniques, combined with better views of the surgical field, have given rise to continual and significant decreases in complication rates and improved functional and oncological outcomes. The possibility of exploring new ways of approaching organs to be treated now allows us to reinforce our anatomical knowledge and plan novel surgical approaches. The present review aims to clarify some of these issues. \ua9 2017 Arab Association of Urology

    A Three-dimensional Printed Low-cost Anterior Shoulder Dislocation Model for Ultrasound-guided Injection Training.

    Get PDF
    Anterior shoulder dislocations are the most common, large joint dislocations that present to the emergency department (ED). Numerous studies support the use of intraarticular local anesthetic injections for the safe, effective, and time-saving reduction of these dislocations. Simulation training is an alternative and effective method for training compared to bedside learning. There are no commercially available ultrasound-compatible shoulder dislocation models. We utilized a three-dimensional (3D) printer to print a model that allows the visualization of the ultrasound anatomy (sonoanatomy) of an anterior shoulder dislocation. We utilized an open-source file of a shoulder, available from embodi3DÂź (Bellevue, WA, US). After approximating the relative orientation of the humerus to the glenoid fossa in an anterior dislocation, the humerus and scapula model was printed with an Ultimaker-2 Extended+ 3DÂź (Ultimaker, Cambridge, MA, US) printer using polylactic acid filaments. A 3D model of the external shoulder anatomy of a live human model was then created using Structure SensorÂź(Occipital, San Francisco, CA, US), a 3D scanner. We aligned the printed dislocation model of the humerus and scapula within the resultant external shoulder mold. A pourable ballistics gel solution was used to create the final shoulder phantom. The use of simulation in medicine is widespread and growing, given the restrictions on work hours and a renewed focus on patient safety. The adage of see one, do one, teach one is being replaced by deliberate practice. Simulation allows such training to occur in a safe teaching environment. The ballistic gel and polylactic acid structure effectively reproduced the sonoanatomy of an anterior shoulder dislocation. The 3D printed model was effective for practicing an in-plane ultrasound-guided intraarticular joint injection. 3D printing is effective in producing a low-cost, ultrasound-capable model simulating an anterior shoulder dislocation. Future research will determine whether provider confidence and the use of intraarticular anesthesia for the management of shoulder dislocations will improve after utilizing this model

    Virtual reality simulation for the optimization of endovascular procedures : current perspectives

    Get PDF
    Endovascular technologies are rapidly evolving, often - requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes

    Download Entire Issue: Gibbon Surgical Review, Volume 1, Issue 1, 2018

    Get PDF
    Table of Contents A First Year\u27s Perspective on JeffMD, Somnath Das, MS1 Spotlight on TJUH\u27s Quality and Safety Group, Samantha L. Savitch, MS1 Medical Student Involvement in Quality Improvement Research, Tyler M. Bauer, MS3 Global Surgery: A Shift in the Global Health Paradigm, Myles S. Dworkin, MS3 Thomas Jefferson University Design Vault, Victor B. Hsue, MS2 Physician Spotlight: Ernest (Gary) L. Rosato, MD, FACS, Carrie E. Andrews, MS3 The SCALPELS Program, Emily Papai, MS

    3D printing is a transformative technology in congenital heart disease

    Get PDF
    Survival in congenital heart disease has steadily improved since 1938, when Dr. Robert Gross successfully ligated for the first time a patent ductus arteriosus in a 7-year-old child. To continue the gains made over the past 80 years, transformative changes with broad impact are needed in management of congenital heart disease. Three-dimensional printing is an emerging technology that is fundamentally affecting patient care, research, trainee education, and interactions among medical teams, patients, and caregivers. This paper first reviews key clinical cases where the technology has affected patient care. It then discusses 3-dimensional printing in trainee education. Thereafter, the role of this technology in communication with multidisciplinary teams, patients, and caregivers is described. Finally, the paper reviews translational technologies on the horizon that promise to take this nascent field even further
    • 

    corecore