223,747 research outputs found

    A model and architecture for situation determination

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. Furthermore, situations are commonly recognised at a low-level of granularity, which limits the scope of situation-aware applications. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specifications that can be easily extended to create new specific situations, and immediately deployed without the need of an environment expert. A proposed architecture of an accompanying situation determination middleware is provided, as well as an analysis of a prototype implementation

    Situation determination with reusable situation specifications

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. In both cases, the situations are tailored to the specific environment, and are therefore not transferable to other environments. Furthermore, situations are recognised at a low-level of granularity, which limits the scope of situation-aware applications. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specications that can be easily extended to create new speficic situations, and immediately deployed without the need of an environment expert. A proposed architecture of an accompanying situation determination middleware is provided, as well as an analysis of a prototype implementation

    A self-managing infrastructure for ad-hoc situation determination

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specifications that can be easily extended to create new specific situations, and immediately deployed without the need of an environment expert. The architecture of an accompanying situation determination infrastructure is provided, which autonomously optimises and repairs itself in reaction to changes or failures in the environment

    Development and Validation of Functional Model of a Cruise Control System

    Full text link
    Modern automobiles can be considered as a collection of many subsystems working with each other to realize safe transportation of the occupants. Innovative technologies that make transportation easier are increasingly incorporated into the automobile in the form of functionalities. These new functionalities in turn increase the complexity of the system framework present and traceability is lost or becomes very tricky in the process. This hugely impacts the development phase of an automobile, in which, the safety and reliability of the automobile design should be ensured. Hence, there is a need to ensure operational safety of the vehicles while adding new functionalities to the vehicle. To address this issue, functional models of such systems are created and analysed. The main purpose of developing a functional model is to improve the traceability and reusability of a system which reduces development time and cost. Operational safety of the system is ensured by analysing the system with respect to random and systematic failures and including safety mechanism to prevent such failures. This paper discusses the development and validation of a functional model of a conventional cruise control system in a passenger vehicle based on the ISO 26262 Road Vehicles - Functional Safety standard. A methodology for creating functional architectures and an architecture of a cruise control system developed using the methodology are presented.Comment: In Proceedings FESCA 2016, arXiv:1603.0837

    Intelligent protocol adaptation for enhanced medical e-collaboration

    Get PDF
    Copyright @ 2003 AAAIDistributed multimedia e-health applications have a set specific requirements which must be taken into account effective use is to be made of the limited resources provided by public telecommunication networks. Moreover, there an architectural gap between the provision of network-level Quality of Service (QoS) and user requirements of e-health applications. In this paper, we address the problem bridging this gap from a multi-attribute decision-making perspective in the context of a remote collaborative environment for back pain treatment. We propose intelligent mechanism that integrates user- related requirements with the more technical characterisation Quality of Service. We show how our framework is capable of suggesting appropriately tailored transmission protocols, by incorporating user requirements in the remote delivery e-health solutions

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine
    corecore