58,254 research outputs found

    A Parametric Non-Convex Decomposition Algorithm for Real-Time and Distributed NMPC

    Get PDF
    A novel decomposition scheme to solve parametric non-convex programs as they arise in Nonlinear Model Predictive Control (NMPC) is presented. It consists of a fixed number of alternating proximal gradient steps and a dual update per time step. Hence, the proposed approach is attractive in a real-time distributed context. Assuming that the Nonlinear Program (NLP) is semi-algebraic and that its critical points are strongly regular, contraction of the sequence of primal-dual iterates is proven, implying stability of the sub-optimality error, under some mild assumptions. Moreover, it is shown that the performance of the optimality-tracking scheme can be enhanced via a continuation technique. The efficacy of the proposed decomposition method is demonstrated by solving a centralised NMPC problem to control a DC motor and a distributed NMPC program for collaborative tracking of unicycles, both within a real-time framework. Furthermore, an analysis of the sub-optimality error as a function of the sampling period is proposed given a fixed computational power.Comment: 16 pages, 9 figure

    Distributive Power Control Algorithm for Multicarrier Interference Network over Time-Varying Fading Channels - Tracking Performance Analysis and Optimization

    Full text link
    Distributed power control over interference limited network has received an increasing intensity of interest over the past few years. Distributed solutions (like the iterative water-filling, gradient projection, etc.) have been intensively investigated under \emph{quasi-static} channels. However, as such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under \emph{time-varying} channels is in general unknown. In this paper, we shall investigate the distributed scaled gradient projection algorithm (DSGPA) in a KK pairs multicarrier interference network under a finite-state Markov channel (FSMC) model. We shall analyze the \emph{convergence property} as well as \emph{tracking performance} of the proposed DSGPA. Our analysis shows that the proposed DSGPA converges to a limit region rather than a single point under the FSMC model. We also show that the order of growth of the tracking errors is given by \mathcal{O}\(1 \big/ \bar{N}\), where Nˉ\bar{N} is the \emph{average sojourn time} of the FSMC. Based on the analysis, we shall derive the \emph{tracking error optimal scaling matrices} via Markov decision process modeling. We shall show that the tracking error optimal scaling matrices can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed DSGPA over three baseline schemes, such as the gradient projection algorithm with a constant stepsize.Comment: To Appear on the IEEE Transaction on Signal Processin
    • …
    corecore