3 research outputs found

    Charakterisierung der Stärke und Richtung von Interaktionen zwischen dynamischen Systemen mit Zellularen Neuronalen Netzen

    Get PDF
    In der vorliegenden Dissertation werden Stärke und Richtung von Interaktionen zwischen komplexen dynamischen Systemen mit Zellularen Neuronalen Netzen (CNN) erfolgreich charakterisiert. Die Berechnung von Kenngrößen zur Charakterisierung von Interaktionen sind im allgemeinen mit einem hohen Rechenaufwand verbunden, so daß Analysen von Felddaten mit herkömmlichen Computern stark limitiert sind. Die attraktiven Eigenschaften der Informationsverarbeitung künstlicher neuronaler Netze sollen daher ausgenutzt werden, um effektiv Interaktionen zwischen dynamischen Systemen zu charakterisieren. Als Grundlage dienen hier nichtlineare Interdependenzmaße als Schätzer für generalisierte Synchronisation, die durch CNN, nach Optimierung der Netzparameter mittels überwachten Lernverfahren, approximiert werden. Zunächst werden die Grenzen dieser Methode anhand von synthetischen Zeitreihen von Modellsystemen mit deterministisch chaotischer Dynamik überprüft, deren Eigenschaften wohlbekannt sind und durch Kontrollparameter gesteuert werden können. Es wird gezeigt, daß CNN geeignet sind, sowohl die Stärke als auch die Richtung von Interaktionen zwischen strukturell identischen und strukturell unterschiedlichen Systemen zu schätzen. Dies ermöglicht einerseits die Unterscheidung der verschiedenen Regimes unabhängiger, intermittenter und synchronisierter Systeme sowie andererseits die korrekte Detektion der Interaktionsrichtung auch im Falle schwach interagierender Systeme. Zur Überprüfung der Eignung von CNN zur Charakterisierung von Interaktionen zwischen komplexen natürlichen dynamischen Systemen werden lang andauernde Vielkanalaufzeichnungen hirnelektrischer Aktivität von Patienten mit fokaler Epilepsie untersucht. Es wird gezeigt, daß sowohl die Stärke als auch die Richtung von Interaktionen zwischen verschiedenen Hirnstrukturen selbst bei lokal unterschiedlichen Dynamiken zuverlässig mit CNN geschätzt werden können. Darüber hinaus werden die Generalisierungseigenschaften der CNN untersucht. Hier wird gezeigt, daß die Schätzung der Interaktionsstärke bzw. Interaktionsrichtung zwischen verschiedenen Hirnstrukturen ohne spezifische Nachoptimierung möglich ist. In vielen Fällen ist sogar die Schätzung von Stärke und Richtung der Interaktionen ohne individuelle Nachoptimierung für verschiedene Patienten möglich. Abschließend wird die Eignung der CNN-basierten Approximationen von Interaktionseigenschaften für die Detektion von Merkmalen untersucht, die auf einen bevorstehenden epileptischen Anfall hindeuten. Es wird gezeigt, daß die Variationen der nichtlinearen Interdependenzmaße für Stärke und Richtung bezüglich eines angenommenen Voranfallszustandes mit CNN reproduziert werden können

    Hilbert-Huang Transform: biosignal analysis and practical implementation

    No full text
    Any system, however trivial, is subjected to data analysis on the signals it produces. Over the last 50 years the influx of new techniques and expansions of older ones have allowed a number of new applications, in a variety of fields, to be analysed and to some degree understood. One of the industries that is benefiting from this growth is the medical field and has been further progressed with the growth of interdisciplinary collaboration. From a signal processing perspective, the challenge comes from the complex and sometimes chaotic nature of the signals that we measure from the body, such as those from the brain and to some degree the heart. In this work we will make a contribution to dealing with such systems, in the form of a recent time-frequency data analysis method, the Hilbert-Huang Transform (HHT), and extensions to it. This thesis presents an analysis of the state of the art in seizure and heart arrhythmia detection and prediction methods. We then present a novel real-time implementation of the algorithm both in software and hardware and the motivations for doing so. First, we present our software implementation, encompassing realtime capabilities and identifying elements that need to be considered for practical use. We then translated this software into hardware to aid real-time implementation and integration. With these implementations in place we apply the HHT method to the topic of epilepsy (seizures) and additionally make contributions to heart arrhythmias and neonate brain dynamics. We use the HHT and some additional algorithms to quantify features associated with each application for detection and prediction. We also quantify significance of activity in such a way as to merge prediction and detection into one framework. Finally, we assess the real-time capabilities of our methods for practical use as a biosignal analysis tool
    corecore