6 research outputs found

    Towards Engaging Intangible Holographic Public Displays

    Get PDF
    Public displays are some of the most challenging interfaces to design because of two key characteristics. First, the experience should be engaging, to attract and maintain users’ attention. Second, the interaction with the display should be natural, meaning that users should be able to receive the desired output with little or no training. Holographic displays are increasingly popular in public spaces such as museums and concert halls but there is little published research on users’ experiences with such displays. Previous research has suggested both tangible and intangible inputs as engaging and natural options for holographic displays, but there is no conclusive evidence on their relative merits. Hence, we run a study to investigate the user experience with a holographic display comparing the level of engagement and feeling of natural experience in the interacting process. We used a mix of surveys, interviews, video recordings, and task-based metrics to measure users’ performance on a specific task, the perceived usability, and levels of engagement and satisfaction. Our findings suggest that a tangible input was reported as more natural than the intangible one, however, both tangible and intangible inputs were found to be equally engaging. The latter findings contribute to the efforts of designing intangible public holographic displays and other interactive systems that take into consideration health safety issues, especially during the Covid-19 pandemic era in which contamination can be established with tangible and physical interaction between users and public displays, yet without affecting the level of engagement compared to the tangible experience

    Towards Engaging Intangible Holographic Public Displays

    Get PDF
    Public displays are some of the most challenging interfaces to design because of two key characteristics. First, the experience should be engaging, to attract and maintain users’ attention. Second, the interaction with the display should be natural, meaning that users should be able to receive the desired output with little or no training. Holographic displays are increasingly popular in public spaces such as museums and concert halls but there is little published research on users’ experiences with such displays. Previous research has suggested both tangible and intangible inputs as engaging and natural options for holographic displays, but there is no conclusive evidence on their relative merits. Hence, we run a study to investigate the user experience with a holographic display comparing the level of engagement and feeling of natural experience in the interacting process. We used a mix of surveys, interviews, video recordings, and task-based metrics to measure users’ performance on a specific task, the perceived usability, and levels of engagement and satisfaction. Our findings suggest that a tangible input was reported as more natural than the intangible one, however, both tangible and intangible inputs were found to be equally engaging. The latter findings contribute to the efforts of designing intangible public holographic displays and other interactive systems that take into consideration health safety issues, especially during the Covid-19 pandemic era in which contamination can be established with tangible and physical interaction between users and public displays, yet without affecting the level of engagement compared to the tangible experience

    The configuration and experience mapping of an accessible VR environment for effective design reviews

    Get PDF
    This paper presents a new VR interaction environment for the evaluation of digital prototypes, specifically in designer-client review sessions, and documents its implementation via experience mapping. Usability of VR controllers and basic manipulation remains a barrier for lay users, and a range of typical implementations are reviewed, highlighting the need for an easily accessible interface for this setting. The resulting interface configuration – the Control Carousel – demonstrates how the appropriate use of familiar mechanisms can increase VR accessibility. Three case studies using the Carousel in commercial design projects are described, and the subsequent interface refinements outlined. Finally, the development of an experience map describing the logistical, interactive and emotive factors affecting the Carousel’s implementation, is documented. This provides insights on how experience mapping can be used as part of a human-centred design process to ensure VR environments are attuned to the requirements of users, in this instance delivering improved collaborative reviews

    A methodological evaluation of natural user interfaces for immersive 3D Graph explorations

    No full text
    In this paper, we present a novel approach for a real-time 3D exploration and interaction of large graphs using an immersive virtual reality environment and a natural user interface. The implementation of the approach has been developed as plug-in module, named 3D Graph Explorer, for Gephi, an open software for graph and network analysis. To assess the validity of the approach and of the overall environment, we have also conducted an empirical evaluation study by grouping people in two different configurations to explore and interact with a large graph. Specifically, we designed an innovative configuration, exploiting the natural user interface in a virtual reality environment, against a well-known and widespread mouse keyboard configuration. The evaluation suggests that these upcoming technologies are more challenging than the traditional ones, but enable user to be more involved during graph interaction and visualization tasks, given the enjoyable experience elicited when combining gestures-based interfaces and virtual reality. (C) 2017 Elsevier Ltd. All rights reserved

    Modelo de processamento de imagem, com múltiplas fontes de aquisição, para manipulação aplicada à domótica

    Get PDF
    Este trabalho foca-se em modelos de processamento de imagem para utilização na visão por computador. Modelos de processamento de imagem com multi-aquisição e/ou em multi-perspectiva, para um conhecimento do meio circundante, com possibilidade de comando e controlo na área da domótica e/ou robótica móvel. Os algoritmos desenvolvidos têm a capacidade de serem implementados em blocos de software ou hardware, de forma independente (autónomos), ou integrados como componentes de um sistema mais complexo. O desenvolvimento dos algoritmos privilegiou o seu elevado desempenho, constrangido pela minimização da carga computacional. Nos modelos de processamento de imagem desenvolvidos foram focados 4 tópicos fundamentais de investigação: a) detecção de movimento de objectos e seres humano em ambiente não controlado; b) detecção da face humana, a ser usada como variável de controlo (entre outras aplicações); c) capacidade de utilização de multi-fontes de aquisição e processamento de imagem, com diferentes condições de iluminação não controladas, integradas num sistema complexo com diversas topologias; d) capacidade de funcionamento de forma autónoma ou em rede distribuída, apenas comunicando resultados finais, ou integrados modularmente na solução final de sistemas complexos de aquisição de imagem. A implementação laboratorial, com teste em protótipos, foi ferramenta decisiva no melhoramento de todos os algoritmos desenvolvidos neste trabalho; IMAGE PROCESSING MODELS, WITH MULTIPLE ACQUISITION SOURCES, FOR MANIPULATION IN DOMOTICS Abstract: This work focuses on image processing models for computer vision. Image processing models with multi-acquisition and/or multi-perspective models were developed to acquire knowledge over the surrounding environment, allowing system control in the field of domotics and/or mobile robotics. The developed algorithms have the capacity to be implemented in software or hardware blocks, independently (autonomous), or integrated as a component in more complex systems. The development of the algorithms was focused on high performance constrained by the computational burden minimization. In the developed image processing models it were addressed 4 main research topics: a) movement detection of objects and human beings in an uncontrolled environment; b) detection of the human face to be used as a control variable (among other applications); c) possibility of using multi-sources of acquisition and image processing, with different uncontrolled lighting conditions, integrated into a complex system with different topologies; d) ability to work as an autonomous entity or as a node integrated on a distributed network, only transmitting final results, or integrated as a link in a complex image processing system. The laboratorial implementation, with prototype tests, was the main tool for the improvement of all developed algorithms, discussed in the present wor
    corecore