3 research outputs found

    Ultra-Efficient Cascaded Buck-Boost Converter

    Get PDF
    This thesis presents various techniques to achieve ultra-high-efficiency for Cascaded-Buck-Boost converter. A rigorous loss model with component non linearity is developed and validated experimentally. An adaptive-switching-frequency control is discussed to optimize weighted efficiency. Some soft-switching techniques are discussed. A low-profile planar-nanocrystalline inductor is developed and various design aspects of core and copper design are discussed. Finite-element-method is used to examine and visualize the inductor design. By implementing the above, a peak efficiency of over 99.2 % is achieved with a power density of 6 kW/L and a maximum profile height of 7 mm is reported. This converter finds many applications because of its versatility: allowing bidirectional power flow and the ability to step-up or step-down voltages in either direction

    REGULATED TRANSFORMER RECTIFIER UNIT FOR MORE ELECTRIC AIRCRAFTS

    Get PDF
    The impending trends in the global demand of more-electric-aircrafts with higher efficiency, high power density, and high degree of compactness has opened up numerous opportunities in front of avionic industries to develop innovative power electronic interfaces. Traditionally, passive diode-bridge based transformer rectifier units (TRU) have been used to generate a DC voltage supply from variable frequency and variable voltage AC power out of the turbo generators. These topologies suffer from bulky and heavy low-frequency transformer size, lack of DC-link voltage regulation flexibility, high degree of harmonic contents in the input currents, and additional cooling arrangement requirements. This PhD research proposes an alternative approach to replace TRUs by actively controlled Regulated Transformer Rectifier Units (RTRUs) employing the advantages of emerging wide band gap (WBG) semiconductor technology. The proposed RTRU utilizing Silicon Carbide (SiC) power devices is composed of a three-phase active boost power factor correction (PFC) rectifier followed by an isolated phase-shifted full bridge (PSFB) DC-DC converter. Various innovative control algorithms for wide-range input frequency operation, ultra-compact EMI filter design methodology, DC link capacitor reduction approach and novel start-up schemes are proposed in order to improve power quality and transient dynamics and to enhance power density of the integrated converter system. Furthermore, a variable switching frequency control algorithm of PSFB DC-DC converter has been proposed for tracking maximum conversion efficiency at all feasible operating conditions. In addition, an innovative methodology engaging multi-objective optimization for designing electromagnetic interference (EMI) filter stage with minimized volume subjected to the reactive power constraints is analyzed and validated experimentally. For proof-of-concept verifications, three different conversion stages i.e. EMI filter, three-phase boost PFC and PSFB converter are individually developed and tested with upto 6kW (continuous) / 10kW (peak) power rating, which can interface a variable input voltage (190V-240V AC RMS) variable frequency (360Hz – 800Hz) three-phase AC excitation source, emulating the airplane turbo generator and provide an AC RMS voltage of 190V to 260V. According to the experimental measurements, total harmonic distortion (THD) as low as 4.3% and an output voltage ripple of ±1% are achieved at rated output power. The proposed SiC based RTRU prototype is ~8% more efficient and ~50% lighter than state-of-the art TRU technologies

    A method of optimizing the switching frequency based on the loss analysis model

    No full text
    corecore