4,167 research outputs found

    Planar Object Tracking in the Wild: A Benchmark

    Full text link
    Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.Comment: Accepted by ICRA 201

    Selecting surface features for accurate multi-camera surface reconstruction

    Get PDF
    This paper proposes a novel feature detector for selecting local textures that are suitable for accurate multi-camera surface reconstruction, and in particular planar patch fitting techniques. This approach is in contrast to conventional feature detectors, which focus on repeatability under scale and affine transformations rather than suitability for multi-camera reconstruction techniques. The proposed detector selects local textures that are sensitive to affine transformations, which is a fundamental requirement for accurate patch fitting. The proposed detector is evaluated against the SIFT detector on a synthetic dataset and the fitted patches are compared against ground truth. The experiments show that patches originating from the proposed detector are fitted more accurately to the visible surfaces than those originating from SIFT keypoints. In addition, the detector is evaluated on a performance capture studio dataset to show the real-world application of the proposed detector

    Selecting surface features for accurate multi-camera surface reconstruction

    Get PDF
    This paper proposes a novel feature detector for selecting local textures that are suitable for accurate multi-camera surface reconstruction, and in particular planar patch fitting techniques. This approach is in contrast to conventional feature detectors, which focus on repeatability under scale and affine transformations rather than suitability for multi-camera reconstruction techniques. The proposed detector selects local textures that are sensitive to affine transformations, which is a fundamental requirement for accurate patch fitting. The proposed detector is evaluated against the SIFT detector on a synthetic dataset and the fitted patches are compared against ground truth. The experiments show that patches originating from the proposed detector are fitted more accurately to the visible surfaces than those originating from SIFT keypoints. In addition, the detector is evaluated on a performance capture studio dataset to show the real-world application of the proposed detector

    Deformable GANs for Pose-based Human Image Generation

    Get PDF
    In this paper we address the problem of generating person images conditioned on a given pose. Specifically, given an image of a person and a target pose, we synthesize a new image of that person in the novel pose. In order to deal with pixel-to-pixel misalignments caused by the pose differences, we introduce deformable skip connections in the generator of our Generative Adversarial Network. Moreover, a nearest-neighbour loss is proposed instead of the common L1 and L2 losses in order to match the details of the generated image with the target image. We test our approach using photos of persons in different poses and we compare our method with previous work in this area showing state-of-the-art results in two benchmarks. Our method can be applied to the wider field of deformable object generation, provided that the pose of the articulated object can be extracted using a keypoint detector.Comment: CVPR 2018 versio

    Visual identification by signature tracking

    Get PDF
    We propose a new camera-based biometric: visual signature identification. We discuss the importance of the parameterization of the signatures in order to achieve good classification results, independently of variations in the position of the camera with respect to the writing surface. We show that affine arc-length parameterization performs better than conventional time and Euclidean arc-length ones. We find that the system verification performance is better than 4 percent error on skilled forgeries and 1 percent error on random forgeries, and that its recognition performance is better than 1 percent error rate, comparable to the best camera-based biometrics
    corecore