2,846 research outputs found

    Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review

    Get PDF
    The capabilities of autonomous mobile robotic systems have been steadily improving due to recent advancements in computer science, engineering, and related disciplines such as cognitive science. In controlled environments, robots have achieved relatively high levels of autonomy. In more unstructured environments, however, the development of fully autonomous mobile robots remains challenging due to the complexity of understanding these environments. Many autonomous mobile robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based methods may replace the complete navigation pipeline or selected stages of the classical approach. For effective deployment, autonomous robots must understand their external environments at a sophisticated level according to their intended applications. Therefore, in addition to robot perception, scene analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments. This paper provides a comprehensive review and critical analysis of these methods in the context of their applications to the problems of robot perception and scene understanding in unstructured environments and the related problems of localisation, environment mapping and path planning. State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also discussed and evaluated within this context. The paper concludes with an in-depth discussion regarding the current state of the autonomous ground robot navigation challenge in unstructured outdoor environments and the most promising future research directions to overcome these challenges

    Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments

    Full text link
    A robot that can carry out a natural-language instruction has been a dream since before the Jetsons cartoon series imagined a life of leisure mediated by a fleet of attentive robot helpers. It is a dream that remains stubbornly distant. However, recent advances in vision and language methods have made incredible progress in closely related areas. This is significant because a robot interpreting a natural-language navigation instruction on the basis of what it sees is carrying out a vision and language process that is similar to Visual Question Answering. Both tasks can be interpreted as visually grounded sequence-to-sequence translation problems, and many of the same methods are applicable. To enable and encourage the application of vision and language methods to the problem of interpreting visually-grounded navigation instructions, we present the Matterport3D Simulator -- a large-scale reinforcement learning environment based on real imagery. Using this simulator, which can in future support a range of embodied vision and language tasks, we provide the first benchmark dataset for visually-grounded natural language navigation in real buildings -- the Room-to-Room (R2R) dataset.Comment: CVPR 2018 Spotlight presentatio

    4CNet: A Confidence-Aware, Contrastive, Conditional, Consistency Model for Robot Map Prediction in Multi-Robot Environments

    Full text link
    Mobile robots in unknown cluttered environments with irregularly shaped obstacles often face sensing, energy, and communication challenges which directly affect their ability to explore these environments. In this paper, we introduce a novel deep learning method, Confidence-Aware Contrastive Conditional Consistency Model (4CNet), for mobile robot map prediction during resource-limited exploration in multi-robot environments. 4CNet uniquely incorporates: 1) a conditional consistency model for map prediction in irregularly shaped unknown regions, 2) a contrastive map-trajectory pretraining framework for a trajectory encoder that extracts spatial information from the trajectories of nearby robots during map prediction, and 3) a confidence network to measure the uncertainty of map prediction for effective exploration under resource constraints. We incorporate 4CNet within our proposed robot exploration with map prediction architecture, 4CNet-E. We then conduct extensive comparison studies with 4CNet-E and state-of-the-art heuristic and learning methods to investigate both map prediction and exploration performance in environments consisting of uneven terrain and irregularly shaped obstacles. Results showed that 4CNet-E obtained statistically significant higher prediction accuracy and area coverage with varying environment sizes, number of robots, energy budgets, and communication limitations. Real-world mobile robot experiments were performed and validated the feasibility and generalizability of 4CNet-E for mobile robot map prediction and exploration.Comment: 14 pages, 10 figure

    Learning Perception-Aware Agile Flight in Cluttered Environments

    Get PDF
    Recently, neural control policies have outperformed existing model-based planning-and-control methods for autonomously navigating quadrotors through cluttered environments in minimum time. However, they are not perception aware, a crucial requirement in vision-based navigation due to the camera's limited field of view and the underactuated nature of a quadrotor. We propose a learning-based system that achieves perception-aware, agile flight in cluttered environments. Our method combines imitation learning with reinforcement learning (RL) by leveraging a privileged learning-by-cheating framework. Using RL, we first train a perception-aware teacher policy with full-state information to fly in minimum time through cluttered environments. Then, we use imitation learning to distill its knowledge into a vision-based student policy that only perceives the environment via a camera. Our approach tightly couples perception and control, showing a significant advantage in computation speed (10×faster) and success rate. We demonstrate the closed-loop control performance using hardware-in-the-loop simulation

    Change of Scenery: Unsupervised LiDAR Change Detection for Mobile Robots

    Full text link
    This paper presents a fully unsupervised deep change detection approach for mobile robots with 3D LiDAR. In unstructured environments, it is infeasible to define a closed set of semantic classes. Instead, semantic segmentation is reformulated as binary change detection. We develop a neural network, RangeNetCD, that uses an existing point-cloud map and a live LiDAR scan to detect scene changes with respect to the map. Using a novel loss function, existing point-cloud semantic segmentation networks can be trained to perform change detection without any labels or assumptions about local semantics. We demonstrate the performance of this approach on data from challenging terrains; mean intersection over union (mIoU) scores range between 67.4% and 82.2% depending on the amount of environmental structure. This outperforms the geometric baseline used in all experiments. The neural network runs faster than 10Hz and is integrated into a robot's autonomy stack to allow safe navigation around obstacles that intersect the planned path. In addition, a novel method for the rapid automated acquisition of per-point ground-truth labels is described. Covering changed parts of the scene with retroreflective materials and applying a threshold filter to the intensity channel of the LiDAR allows for quantitative evaluation of the change detector.Comment: 7 pages (6 content, 1 references). 7 figures, submitted to the 2024 IEEE International Conference on Robotics and Automation (ICRA

    GrASPE: Graph based Multimodal Fusion for Robot Navigation in Unstructured Outdoor Environments

    Full text link
    We present a novel trajectory traversability estimation and planning algorithm for robot navigation in complex outdoor environments. We incorporate multimodal sensory inputs from an RGB camera, 3D LiDAR, and robot's odometry sensor to train a prediction model to estimate candidate trajectories' success probabilities based on partially reliable multi-modal sensor observations. We encode high-dimensional multi-modal sensory inputs to low-dimensional feature vectors using encoder networks and represent them as a connected graph to train an attention-based Graph Neural Network (GNN) model to predict trajectory success probabilities. We further analyze the image and point cloud data separately to quantify sensor reliability to augment the weights of the feature graph representation used in our GNN. During runtime, our model utilizes multi-sensor inputs to predict the success probabilities of the trajectories generated by a local planner to avoid potential collisions and failures. Our algorithm demonstrates robust predictions when one or more sensor modalities are unreliable or unavailable in complex outdoor environments. We evaluate our algorithm's navigation performance using a Spot robot in real-world outdoor environments

    Specifying and Interpreting Reinforcement Learning Policies through Simulatable Machine Learning

    Full text link
    Human-AI collaborative policy synthesis is a procedure in which (1) a human initializes an autonomous agent's behavior, (2) Reinforcement Learning improves the human specified behavior, and (3) the agent can explain the final optimized policy to the user. This paradigm leverages human expertise and facilitates a greater insight into the learned behaviors of an agent. Existing approaches to enabling collaborative policy specification involve black box methods which are unintelligible and are not catered towards non-expert end-users. In this paper, we develop a novel collaborative framework to enable humans to initialize and interpret an autonomous agent's behavior, rooted in principles of human-centered design. Through our framework, we enable humans to specify an initial behavior model in the form of unstructured, natural language, which we then convert to lexical decision trees. Next, we are able to leverage these human-specified policies, to warm-start reinforcement learning and further allow the agent to optimize the policies through reinforcement learning. Finally, to close the loop on human-specification, we produce explanations of the final learned policy, in multiple modalities, to provide the user a final depiction about the learned policy of the agent. We validate our approach by showing that our model can produce >80% accuracy, and that human-initialized policies are able to successfully warm-start RL. We then conduct a novel human-subjects study quantifying the relative subjective and objective benefits of varying XAI modalities(e.g., Tree, Language, and Program) for explaining learned policies to end-users, in terms of usability and interpretability and identify the circumstances that influence these measures. Our findings emphasize the need for personalized explainable systems that can facilitate user-centric policy explanations for a variety of end-users

    Deep-learning the Latent Space of Light Transport

    Get PDF
    We suggest a method to directly deep‐learn light transport, i. e., the mapping from a 3D geometry‐illumination‐material configuration to a shaded 2D image. While many previous learning methods have employed 2D convolutional neural networks applied to images, we show for the first time that light transport can be learned directly in 3D. The benefit of 3D over 2D is, that the former can also correctly capture illumination effects related to occluded and/or semi‐transparent geometry. To learn 3D light transport, we represent the 3D scene as an unstructured 3D point cloud, which is later, during rendering, projected to the 2D output image. Thus, we suggest a two‐stage operator comprising a 3D network that first transforms the point cloud into a latent representation, which is later on projected to the 2D output image using a dedicated 3D‐2D network in a second step. We will show that our approach results in improved quality in terms of temporal coherence while retaining most of the computational efficiency of common 2D methods. As a consequence, the proposed two stage‐operator serves as a valuable extension to modern deferred shading approaches
    • 

    corecore