2 research outputs found

    A method for design of impulse bursts noise filters optimized for FPGA implementations

    Full text link
    Abstract—This paper deals with the evolutionary design of area-efficient filters for impulse bursts noise which is often present in remote sensing images such as satellite images. Evolved filters require much smaller area in the FPGA than conventional filters. Simultaneously, they exhibit at least comparable filtering capabilities with respect to conventional filters. Low-cost embed-ded systems equipped with low-end FPGAs represent a target application for presented filters. I

    Noise-agnostic adaptive image filtering without training references on an evolvable hardware platform

    Get PDF
    One of the main concerns of evolvable and adaptive systems is the need of a training mechanism, which is normally done by using a training reference and a test input. The fitness function to be optimized during the evolution (training) phase is obtained by comparing the output of the candidate systems against the reference. The adaptivity that this type of systems may provide by re-evolving during operation is especially important for applications with runtime variable conditions. However, fully automated self-adaptivity poses additional problems. For instance, in some cases, it is not possible to have such reference, because the changes in the environment conditions are unknown, so it becomes difficult to autonomously identify which problem requires to be solved, and hence, what conditions should be representative for an adequate re-evolution. In this paper, a solution to solve this dependency is presented and analyzed. The system consists of an image filter application mapped on an evolvable hardware platform, able to evolve using two consecutive frames from a camera as both test and reference images. The system is entirely mapped in an FPGA, and native dynamic and partial reconfiguration is used for evolution. It is also shown that using such images, both of them being noisy, as input and reference images in the evolution phase of the system is equivalent or even better than evolving the filter with offline images. The combination of both techniques results in the completely autonomous, noise type/level agnostic filtering system without reference image requirement described along the paper
    corecore