
Noise-agnostic Adaptive Image Filtering
without Training References

on an Evolvable Hardware Platform
Javier Mora, Ángel Gallego, Andrés Otero, Eduardo de la Torre, Teresa Riesgo

Centro de Electrónica Industrial
Universidad Politécnica de Madrid

Madrid, Spain
{javier.morad, angel.gallegog, joseandres.otero, eduardo.delatorre, teresa.riesgo}@upm.es

Abstract— One of the main concerns of evolvable and
adaptive systems is the need of a training mechanism, which is
normally done by using a training reference and a test input.
The fitness function to be optimized during the evolution
(training) phase is obtained by comparing the output of the
candidate systems against the reference. The adaptivity that this
type of systems may provide by re-evolving during operation is
especially important for applications with runtime variable
conditions. However, fully automated self-adaptivity poses
additional problems. For instance, in some cases, it is not
possible to have such reference, because the changes in the
environment conditions are unknown, so it becomes difficult to
autonomously identify which problem requires to be solved, and
hence, what conditions should be representative for an adequate
re-evolution. In this paper, a solution to solve this dependency is
presented and analyzed. The system consists of an image filter
application mapped on an evolvable hardware platform, able to
evolve using two consecutive frames from a camera as both test
and reference images. The system is entirely mapped in an
FPGA, and native dynamic and partial reconfiguration is used
for evolution. It is also shown that using such images, both of
them being noisy, as input and reference images in the evolution
phase of the system is equivalent or even better than evolving the
filter with offline images. The combination of both techniques
results in the completely autonomous, noise type/level agnostic
filtering system without reference image requirement described
along the paper.

Keywords— evolvable hardware; evolutionary algorithms;
adaptive systems; image filter; reference image; camera

I. INTRODUCTION

Self-adaptive systems are a widely used approach for
autonomous system design that allows them to automatically
adapt to the conditions of a certain problem without requiring
user control. This is usually achieved by feeding the system
with known test data and comparing the output with a golden
reference. If output and reference differ too much, this means
that the system needs to be modified, because the bigger the
difference, the further the system is from the ideal solution.

One way to do this is by using evolutionary algorithms
(EA), which are mainly optimization methods used to find a
solution based on a target criterion, typically called fitness
function. These algorithms are inspired by natural selection
and follow the premise of “survival of the fittest”, seeking

better solutions by applying random changes to already known
ones, in an attempt to improve their worst features and hence
reach optimized solutions of the problem.

Hardware architectures able to perform dynamic and
partial reconfiguration (DPR), such as RAM-based FPGAs,
may self-reconfigure themselves and take advantage of the
possibility of intrinsically modify their logic, so by such
evolutionary algorithms that may achieve inherent self-
adaptivity. These are the basic elements to obtain Evolvable
hardware (EHW) systems.

Typically, operation time of these systems is divided into
two stages: first, a training stage is carried out, in order to
achieve a proper configuration which will depend on the
different operating conditions (environment, inputs, the system
itself, presence of faults…). This stage can take several
minutes, during which the system will be halted. Next, a
normal or mission operation stage starts, in which the system
works well in those particular conditions, according to the
configuration achieved in the previous stage. In order to also
have fault tolerance, these two stages could be alternated
during the entire lifetime, for instance combined with a fault
detection mechanism that launches the evolution phase again to
overcome the permanent fault that had occurred.

However, the described mechanism has several problems in
real time conditions. The main problems to consider are:

 It requires a way to identify the type and level of noise that
is going to be filtered, which will be different on each
situation (otherwise the filter would not be adaptive).

 Moreover, it relies on having an appropriate and accurate
model for that noise (which can be generated and added
online or offline), in order to create the test images to train
the system from the golden reference.

 Finally, it requires a way to store, receive or generate the
golden reference and the training images with the generated
noise.

These problems are hard to solve without overcomplicating
the system (for example, adding external storage, a
communication system, a noise detector and a noise classifier,
a configurable noise generator...), so finding a way to skip
them would be beneficial to the system. Along this paper, a
solution to all these problems is shown, by combining two

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148669254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

main techniques: one of the techniques is based on using two
identical images with added uncorrelated noise for both the
training image and the reference image. As it was shown in
[1], the usage of the same image with the same type and level
of noise, but with zero correlation between them, allows the
system to obtain valid solutions for the configuration of the
filter in the training stage.

On the other hand, the second technique is based on using
two consecutive frames from a camera as the ‘identical’ couple
of images mentioned before, which allows to get rid of the
storage, reception or generation of golden reference images.
Additionally, since the images used for training come from the
camera, there is no need for a noise identification stage and/or
an accurate model of the noise. The implementation of both
techniques together is the main novel contribution of this work.
The quality of the filters achieved using these techniques needs
to be verified statistically. Experimental results will show that
the use of these techniques combined with a proper selection of
the images to be set for training provide results which are
equivalent (and in some cases even better) than with a
traditional evolution run with golden pre-computed reference
images.

The self-adaptivity techniques that are proposed in this
paper have been implemented on a system which is capable of
performing intrinsic evolution by using the native dynamic and
partial reconfiguration techniques of the FPGA that holds the
complete system. Details on the architecture are contained in
[2], but the important features are extracted and presented in
section III within this paper for completeness. Systems that are
able to evolve intrinsically have other advantages like the
capability of self-healing themselves by launching a new
evolution run which remaps the generated logic by avoiding
the use of the faulty elements. In our system, an analysis of the
fault tolerance is presented in [3]. Although this is not the
scope of the present paper, this feature must be taken into
account in order to appropriately evaluate the added benefits of
both self-adaptivity and self-healing, making the system more
autonomous.

The paper is structured as follows: Related work is shown
in section II. The architecture of the whole system is
summarized in section III. In section IV, an analysis of the
main possible solutions is done, including the main aspects of
the selected methods. Results obtained and the main benefits
of this architecture are shown in section V. Finally,
conclusions and future work are drawn in section VI.

II. RELATED WORK

Image filtering is the process by which the noise in an
image is removed to have a clearer one. This noise can come
from different sources: malfunctioning pixels in the camera
sensor, dust in the lens, the circuitry of the camera, and mainly
because of the transmission in a noisy channel [4]. The most
common noise model is impulse noise, in which perturbations
affect a few random pixels, leaving the rest of them unaltered.
Impulse noise models are either salt and pepper noise (which
means that some pixels are replaced by the highest or the
lowest value of their range) or random-value noise (any value
of the range). There are many different approaches to tackle

this problem, most of them being nonlinear filters. The median
filter has been one of the most used filters, but it presents
several drawbacks and it has been substituted by more
advanced ones. Even so, it is still used as a reference for
comparison.

To deal with the problems of the median filter, different
methods try to improve performance with a pre-analysis of the
image in order for the filter to identify the noisy pixels, and
hence be more efficient, trying to achieve the so-called detail
preserving [5]. Among these new algorithms are Adaptive
Median (AM) filters ([6]), Switching Median (SM) filters ([7]),
and Weighted Order Statistics (WOS) filters ([8]). These
decision-based filters take advantage of the pre-analysis and
only modify the noisy pixels, leaving the rest of them
unaltered, and as a result, very high quality images are obtained
with really high noise rates (up to 90%, as shown in [9] and
[10]). However, the complexity of these filters and the
tendency to implement them in software implies high times in
order to pre-process and filter the image, and so, they are not
suitable for real time processing even for low frame rates.

To improve the speed, implementing these filters in
hardware is another alternative. For instance, a hardware
implementation of the AM filter is described in [11], which
achieves throughputs up to 300 megapixels per second, making
it suitable for real time applications, and is able to filter images
in which up to 60% of pixels are corrupted by using a 7×7
window. Other hardware implementations of image processing
filters are shown in [12] and [13], with different tradeoffs
between resource usage and performance. However, all these
solutions present high implementation costs, and their
adaptability is based on analyzing the local properties of the
signal, rather than adapting the system as a whole, designing
new configurations at runtime and automatically in order for
the filter to solve the given problem.

On the other hand, evolutionary techniques are a hot topic
within the advanced design methodologies and the advanced
processing architectures of autonomous and self-adaptive
systems. In the hardware field, lots of advantages are obtained
by the usage of these implementations on FPGAs, using the
aforementioned EHW. There are two main manners of
implementing EHW: by creating a circuit that can switch
between different functionalities (for example, using a
multiplexor) or by reconfiguring the FPGA fabric using DPR.

First attempts in this field using DPR were unfeasible due
to the slow reconfiguration times and the obfuscated structure
of the configuration bitstream, so the other approach was often
preferred. This is the case of implementations such as virtual
reconfigurable circuits (VRC) [14], which achieve high
reconfiguration speeds at the expense of a high resource usage.
An example application of such a system for image filtering
with EHW is proposed in [15], which uses VRC together with
a processing architecture known as Cartesian genetic
programming (CGP) [16]. In [17], this solution is
implemented using a hardware implementation of the EA.

However, interest in DPR has grown in the last years, and
new approaches have appeared that allow for more flexibility
and faster reconfiguration speeds. This manner of design
allows the system to be flexible and adaptive, and it can be

applied in a wide range of applications, from image filtering
tasks ([18]) to data classification systems, such as the one
shown in [19].

An intermediate approach between DPR and VRC is using
the shift register LUT (SRL) behavior of certain Xilinx FPGAs
as a way to change its logic [20]. This manner of reconfiguring
is much faster, but its possibilities are more limited.

III. SYSTEM DESCRIPTION

The system has been implemented on an FPGA, following
a System on Programmable Chip (SoPC) approach, including
the main components: i) the reconfigurable region where the
filter processing logic is implemented, which has been
designed as an array of processing elements; ii) the
evolutionary algorithm, which takes decisions on how and
when to mutate the array according to the evolutionary rules,
iii) the reconfiguration engine (RE) which is in charge of
modifying the array functionality by managing the internal
configuration port of the FPGA, with the reconfiguration
commands coming from the EA, and iv) the fitness evaluation
unit, which computes the accumulated sum of the differences,
pixel by pixel, of the output image and the reference image,
and whose output value (fitness and latency of the processing)
are sent to the Microblaze so that the EA performs a new
candidate selection.

The processing array is a data processing architecture
known as systolic array, in which several processing elements
(PEs) are arranged in a matrix (in this case, a 4×4 matrix).
Each of these PEs performs a simple operation (addition,
subtraction, average, data copying…) in a single clock cycle,
using the data that may come from the processing elements
situated above, to the left, both above and left, or none (there is
a PE giving 0xFF value at the outputs, but it does not read
data). The result is sent to both the PE below it and to its right.
Fig. 1 shows a schematic diagram of a PE and the processing
array structure. The evolutionary algorithm (EA) decides
which PE out of a library of PEs is to be placed in each of the
16 different positions. This architecture is faster than CGP
since data moves from a PE to a contiguous one rather than one
placed in an arbitrary position, thus making the data paths
shorter and not requiring multiplexors to select the PE inputs as
the paths are prefixed.

In this particular implementation, the data to be processed
will be 8 bit pixels from an input image which has some kind
of noise that has to be removed. These pixels are fed to the
array as a 3×3 pixel window which surrounds the pixel to be
filtered. This window slides over the whole image, moving
one pixel per clock cycle, until it reaches the last pixel of the
image. Multiple data values are fed to the array from the top
and left sides. The EA decides which of the 9 pixels of the
sliding 3×3 window is selected in each of these inputs. Also,
the result is extracted from one of the PEs on the right side,
which is selected also by the EA. As it can be seen, this
architecture is able to process one data value per clock cycle in
a segmented manner, with certain data propagation latency,
which depends on the selected PEs, selected pixels at the inputs
and selected output.

Fig. 1 Structure of a PE and architecture of the systolic array, which consists
of different PEs. Each PE communicates with its neighbors, and performs

one operation per clock cycle.

In order to automatically configure the filter to perform a
specific task, an EA running on the MicroBlaze is used. The
EA implemented here is a simple (1+λ) algorithm in which a
population of λ+1 candidate filter configurations are evaluated.
Each of these candidates is described as a set of parameters,
each of which indicates what function each PE performs or
which input or output is selected.

This algorithm starts with a population of λ+1 randomly
generated candidates. Then it evaluates each of these
candidates by reconfiguring the filter with the parameters from
the candidate, filtering a test image, which is an image to which
noise has intentionally been added, and comparing the result
pixel by pixel with a reference image, which is the unaltered
image, as shown in Fig. 2. The fitness function is calculated as
the sum of absolute differences between pixels (SAE, sum of
absolute errors), so the lower the fitness value, the better the
filter. The fitness values from all candidates are compared, and
the candidate with the lowest fitness is chosen as the parent for
the next generation. This parent is mutated by replacing K
randomly chosen parameters with new random values, creating
a new child candidate (K is known as “mutation rate”). The
process is repeated λ times, generating λ new candidates from
the same parent, so that the population now has λ+1 members
including the parent. The EA is executed for a certain number
of generations, which in our case is stopped after a given
number of generations have taken place. This solution will be
a filter able to process other images with the same type of
noise.

Fig. 2 Evolutionary loop scheme with the array, the test input image, the
golden reference and the output filtered image. Fitness is calculated and used

in the loop to improve the configuration.

The PEs which are selected by the EA are set into the array
using the DPR capabilities of the FPGA. In order to do this, a
RE has been developed, which will be able to modify the
systolic array while the rest of the system keeps working. The
RE is able to relocate the bitstream position depending on the
PE selected to be changed, so the PE library requires only one
copy of each PE, for a neutral position.

In addition to the aforementioned components, the SoPC
has external memory controllers for a CompactFlash card and
RAM memory, which will be used for loading and storing the
images and the partial circuits for each PE function, and a
camera controller that allows the system to take images from a
CMOS sensor. This camera will allow the system to be used
for real time image processing.

IV. PROBLEM DESCRIPTION AND POSSIBLE SOLUTIONS

The problem of obtaining the reference in autonomous
systems in order to have adaptivity to different types and levels
of noise is the main goal to be solved. In general, different
solutions are traditionally considered, although in principle all
methods are variations of the following ones:

 To generate the reference image starting from a filter
model, which could possibly be in SW (but it would be
slow), and apply this model to a noisy image, so that the
result image is used as the reference image to follow during
evolution. This solution requires the noise to be pre-
characterized and identified in order to apply the
appropriate filter or, if a generic noise reduction filter is
used, then filter performance may be very poor.

 To use a noise generator model to generate the input image
to be used during evolution, while keeping the noise-free
image as the solution to evolve to. This also requires noise
pre-characterization.

 To feed the system with a known test pattern. This
involves the system to be able to point, during mission
operation, at a specific know position, in order to compare
the noisy image acquired this way with the pre-stored
reference pattern. This is difficult to achieve in many
cases.

As it can be seen, either noise analysis and pre-
characterization, poor performance, or lack of a reference to
have a kind of self-calibration are the main problems of the
previous methods. So, the solution that is proposed is based on
using a second noisy image as reference image.

Let's consider two images with the same type of noise, for
example salt and pepper noise (in which randomly selected
pixels from the image have been replaced with black or white
pixels). If the noise in both images is not correlated, some
pixels that are noisy in one of the images will be clean in the
other one. Because of this, an evolvable filter that uses one of
the noisy images as input and the other one as reference would
attempt to make the noisy pixel look like the one with no noise
(Fig. 3). For this reason, using two noisy images as input and
reference for training can be a valid alternative to having a
clean reference.

Fig. 3 Same evolutionary loop but using two non-correlated noisy images.

The requirement of non-correlated noise in the images is
not a strong one, since noise is by definition uncorrelated. As
in all sliding window based filters, other type of defects such as
lens aberrations cannot be corrected with this method, be with
noise-free images or with noisy ones.

In the case of images retrieved from a camera, there will
not be two identical images with random noise but, since two
consecutive frames are usually very similar, they could be used
instead of two identical ones. A similar technique has already
been proposed in [1] for removing noise from video sequences,
using two consecutive noisy frames to generate a cleaner
frame.

This solution presents a drawback: both images must be as
similar as possible in order for the filter to achieve a proper
configuration. If that condition is not ensured, and the second
frame presents several differences with the first one, as the
system adapts to the task for which is trained, the resulting
configuration will not only try to remove noise, but also cope
with the differences by changing the input image. For instance,
in the case of a moving real-time camera, two consecutive
frames may have a small offset between them, so the filter will
try to also move the input image in the same direction, and
hence will behave very poorly if the movement is later done in
the other direction. For that reason, it is important to perform a
frame selection stage prior to evolution, to select the best pair
of consecutive frames to train the system.

Hence, experimental results in the next section are shown in
order to validate the equivalence of using noisy images for both
input and reference images, and a detailed analysis of the
assumption of using two consecutive frames as identical.
Statistic results are shown in order to assess different frame
selection algorithms in order to improve filter quality.

V. EXPERIMENTAL RESULTS

The video sequence these experiments will use is the
Foreman sequence, which has 300 frames, and has been
resized to a size of 128×128 grayscale pixels. A 5% level of
salt and pepper noise (randomly chosen pixels are changed to 0
or 255) is added to each of these frames in order to test if the
filter is able to remove this noise. Quality measurements are
done using SAE, measured against the original, noise-free
images. The proposed system has been implemented on a
Xilinx Virtex 5 LX110T FPGA, on an XUPV5 board.

A. Evolution with noise-free reference versus noisy one
In order to test the idea, three experiments have been run:

1. Traditional evolution, using a noisy image as input and
the noise-free version of that image as reference.

2. Using as reference the same frame with noise (this is,
both the input and reference image are the same frame
with the same type of noise.

3. Using two consecutive noisy frames as both input and
reference images.

All these experiments have been performed using the same
evolutionary algorithm. The training process consists of
choosing the best result among 5 independent evolutionary
runs, each of them with 20 000 generations, 1 parent and 8
children per generation, using a mutation rate of K=3, that is, 3
elements (of a total of 25 elements are changed in every
mutation operation). The total number of elements in the
genotype, 25, corresponds to 16 PE slots + 8 input multiplexers
+ 1 output multiplexer. Every training sequence implies a total
of 800 000 filter generations, reconfigurations and evaluations
in order to get a single filter. Since the reconfiguration engine
is capable of reconfiguring a PE in less than 100 us, and the
evaluation of a candidate (filtering an image) is of the same
order of magnitude, several thousands of circuits are generated
and tested per second, so a complete training takes around 4
minutes, after which a filter will have been generated which
will be able to filter images at a very high speed (200 Mpx per
second), which makes it suited for real time applications.

After a filter is obtained, the whole sequence is filtered, and
its output is compared, frame by frame, with the original noise-
free sequence. This process is repeated with each of the 300
frames of the sequence, thus obtaining 300 different filters and
so, 90 000 fitness (SAE) values for each of the three
experiments. These values are shown in Fig. 4, next to the
SAE values of the median filter, which is a filter commonly
used for removing this type of noise [21], and the SAE the
input frame had (the SAE of the non-filtered noisy sequence)
are shown for comparison.

Fig. 4 SAE comparison between the noisy input, results of the median filter
and the results obtained by the evolvable hardware system (lower is better).

Fig. 5 Scatter plot of the results of the 300 different filters for the evolution
based on a noise-free reference image. It shows the dispersion of the

standard deviations and averages of log(SAE). Median filter and input image
SAEs are also represented.

As can be seen, the filters obtained evolving with a clean
reference are much better than the median filter, and most of
them have less dispersion in the results, as it is shown in Fig. 5.

The results of evolving using two noisy versions of the
same frame are almost identical to the ones using a clean
reference, as can be seen in Fig. 4 and Fig. 6, even despite of
not having a clean reference to train the filter with. Therefore,
it is experimentally validated that noisy references can be
perfectly used as a replacement for clean references for salt-
and-pepper noise.

Fig. 6 Scatter plot of the filters obtained using non-correlated noisy images
as reference.

Since two consecutive frames in a video sequence are
expected to have little changes, one may think that the results
of training a filter with two consecutive frames as input and
reference would be similar to those of training it with the same
frame. However, Fig. 4 and Fig. 7 show that this is not true:
the results are worse and unstable in this case.

This is due to the video sequence having a lot of motion
between frames, which causes the system to generate a filter
that either tries to recreate that motion or attempts to generate
an average image. Therefore, using any pair of arbitrary
consecutive frames as both input and reference images for
training is not a good solution, at least for video sequences with
high amounts of motion or changes between frames. This
problem will be dealt with in the next subsection.

Fig. 7 Scatter plot of the different filters obtained by using two consecutive
frames from a video sequence.

B. Consecutive frame selection method
A solution for the problem described in the previous

subsection is to capture a sequence of frames, compare them in
order to get the two most similar consecutive ones, and use
them for training the filter. These comparisons can be
performed on the noisy frames (that is, such as they are taken
from the camera), and not necessarily with the noise-free ones,
since the differences with and without noise are very well
correlated, as it can be seen in Fig. 8.

Fig. 8 Correlation between the values of the SAE between the clean
consecutive frames, and the value of the SAE of the same frames with noise.

The computation of the difference between consecutive
images can be done using the same hardware that is used for
evolution, by configuring the filter as a pass-through filter that
just copies the image and calculates the difference with the
reference, so no additional hardware is needed for this.

The next question to solve is to see how long this sequence
should be. In order to measure this, comparisons are
performed on a subsequence of frames starting with each of the
300 frames on the whole sequence, and variable length (with
rolling at the end of the sequence). As a result, 300 training
processes are performed, but unlike with the previous
experiment, some of these training processes will be performed
with the same couple of images (local minimums around the
whole sequence).

This experiment has been performed with a subsequence
length of 10, 30, 60, 100 frames, and the whole sequence. As
can be seen in Fig. 9 and Fig. 10, using a long enough frame
sequence (of 30 to 60 frames), the obtained filters outperform
the median filter in most cases, reaching performance values
very similar to the ones obtained with the evolution with a
clean reference when the sequence length is 100 to 300 frames.

Fig. 9 Comparison of the previous results with the ones obtained by selecting
the two most similar frames in a subsequence of 10, 30, 60, 100, and 300

frames respectively.

Fig. 10 Scatter plots of the different solutions: with 10, 30, 60, 100 and 300
consecutive frames respectively.

C. Experiments with other noise types and levels
As mentioned before, one of the advantages of evolvable

systems is their generalizability. All the results shown in
previous experiments have been obtained with the same type
and level of noise (5% salt and pepper noise), but this system
will adapt to other noise types and levels, as can be seen in Fig.
11. In each of these experiments, only 50 filters have been
generated, each of them using a random starting frame and a
subsequence length of 60 frames, assuming this is a sufficiently
good method as derived from the previous subsection.

The types and levels of noise that have been used are 5%,
10% and 20% of salt and pepper noise (same as before), 5%
impulse noise, in which randomly chosen pixels are replaced
by a random value, or 5% burst noise, which simulates the
effects of packet loss, which is seen as random horizontal white
lines appearing on the image. The figure includes the results of
the median filter (white boxes) next to the obtained filters (dark
boxes). As can be seen, the results of the obtained filters are
better than the ones of the median filter in most cases and
similar for the 20% salt and pepper one. Nevertheless, it was
shown in [22] that several cascaded arrays yield much better
results.

Fig. 11 Comparison among different types and levels of noise in the images.
From left to right: salt and pepper noise with levels of 5, 10 and 20 %;

impulse noise at 5%; burst noise at 5%.

Also some images are shown in Fig. 12 as an example of
results obtained. This shows that the system is generalizable,
which means it can be train with one image and be used with
any other different images with the same type and level of
noise, as the system adapts to the task for which is trained.

VI. CONCLUSIONS AND FUTURE WORK

Evolvable hardware systems have shown to be a very good
solution for solving adaptability problems such as
environmental changes adaptation and fault tolerance.
However, from a practical point of view, the need of having a
reference to converge to is far from easy for fully autonomous
systems. The proposed evolvable hardware system can
successfully generate a configuration for filtering diverse types

of noise, without needing a clean reference image nor a
mechanism for classifying and emulating the noise. The noisy
images used for training the filter can be either the same frame
with non-correlated noise or two consecutive frames. In the
case of two consecutive frames, a previous search must be
done in order to find two frames that look alike as much as
possible. With a system as proposed in [22], with dynamic
scalability that allows to increase the number of arrays, this
comparison task can be done in parallel, trying to find the best
two consecutive frames while the filtering task is kept.

This system relies on the randomness of noise, which
causes noisy pixels to be placed on different positions of both
images. As a result, this system will not preform very well
with noise with other causes such as damaged pixels on fixed
positions (e.g. dust on the camera lens), or noise that affects all
pixels of an image rather than a few ones (for instance the
amplifier noise, which adds an uncorrelated (white) error to all
pixels on the image, so there will not be any clean pixel on the
reference image that can be used as actual reference).

VII. REFERENCES

[1] Zhou, Xiang; William G. Wee.; "Adaptive order statistic filters for noise
characterization and suppression without a noise-free reference."
Communications, 1998. ICC 98. Conference Record. 1998 IEEE
International Conference on. Vol. 3. IEEE, 1998.

[2] Otero, A.; Salvador, R.; Mora, J.; de la Torre, E.; Riesgo, T.; Sekanina,
L.; "A fast Reconfigurable 2D HW core architecture on FPGAs for
evolvable Self-Adaptive Systems," 2011 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS).

[3] Salvador, R.; Otero, A.; Mora, J.; de la Torre, E.; Sekanina, L.; Riesgo,
T.; "Fault Tolerance Analysis and Self-Healing Strategy of Autonomous,
Evolvable Hardware Systems," International Conference on
Reconfigurable Computing and FPGAs (ReConFig), 2011.

[4] Bovik, A. C. "Handbook of image and video processing," Academic
Press, (2010).

[5] Vijaykumar, V. R.; Ebenezer, D.; Vanathi, P. T.; "Detail preserving
median based filter for impulse noise removal in digital images," In
Signal Processing, 2008. ICSP 2008. 9th International Conference on
(pp. 793-796). IEEE 2008, October.

[6] Hwang, H.; Haddad, R. A.; "Adaptive median filters: new algorithms
and results," Image Processing, IEEE Transactions on, 4(4), 499-502.
1995.

[7] Wang, Z.; Zhang, D.; "Progressive switching median filter for the
removal of impulse noise from highly corrupted images," Circuits and
Systems II: Analog and Digital Signal Processing, IEEE Transactions
on, 46(1), 78-80. 1999.

[8] Marshall, S., "New direct design method for weighted order statistic
filters," Vision, Image and Signal Processing, IEE Proceedings - ,
vol.151, no.1, pp.1,8, 5 Feb. 2004

[9] Chan, R. H.; Ho, C. W.; Nikolova, M.; "Salt-and-pepper noise removal
by median-type noise detectors and detail-preserving regularization,"
Image Processing, IEEE Transactions on, 14(10), pp 1479-1485, 2005.

[10] Aiswarya, K.; Jayaraj, V.; Ebenezer, D.; "A new and efficient algorithm
for the removal of high density salt and pepper noise in images and
videos," In Computer Modeling and Simulation, 2010. ICCMS'10.
Second International Conference on (Vol. 4, pp. 409-413). IEEE.

[11] Vasicek, Z.; Sekanina, L., "Novel Hardware Implementation of
Adaptive Median Filters," Design and Diagnostics of Electronic Circuits
and Systems, 2008. DDECS 2008. 11th IEEE Workshop on , vol., no.,
pp.1,6, 16-18 April 2008

[12] Fahmy, S.A.; Cheung, P. Y K; Luk, W., "Novel FPGA-based
implementation of median and weighted median filters for image
processing," Field Programmable Logic and Applications, 2005.
International Conference on , vol., no., pp.142,147, 24-26 Aug. 2005

[13] Caban, D.; "FPGA implementation of positional filters," In Design of
Embedded Control Systems (pp. 243-249). Springer US. 2005

[14] L. Sekanina, “Virtual Reconfigurable Circuits For Real-World
Applications Of Evolvable Hardware” Proc. of the 5th international
Conf. on Evolvable systems: from biology to hardware. ICES 2003, vol.
2606, pp. 186-197.

[15] Vasicek, Z.; Sekanina, L.; Bidlo, M., "A method for design of impulse
bursts noise filters optimized for FPGA implementations," Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010 ,
vol., no., pp.1731,1736, 8-12 March 2010

[16] Miller, J. F.; "An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach,"
Proceedings of the Genetic and Evolutionary Computation Conference
(Vol. 2, pp. 1135-1142), July 1999

[17] Krishna, K. S. R.; Reddy, A. G.; Prasad, M. G.; Rao, K. C.; Madhavi,
M.; "Genetic algorithm processor for image noise filtering using
evolvable hardware," International Journal of Image Processing, 4(3),
240-250, 2010

[18] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L.
Sekanina, “Evolvable 2D computing matrix model for intrinsic evolution

in commercial FPGAs with native reconfiguration support” Proc. of the
2011 NASA/ESA Conference on Adaptive Hardware and Systems,
IEEE Computer Society, 2011, pp. 184-191.

[19] Torresen, J.; Senland, G.A.; Glette, K., "Partial Reconfiguration Applied
in an On-line Evolvable Pattern Recognition System," NORCHIP, 2008.
, vol., no., pp.61,64, 16-17 Nov. 2008

[20] Glette, K.; Torresen, J.; Hovin, M., "Intermediate Level FPGA
Reconfiguration for an Online EHW Pattern Recognition System,"
Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA
Conference on , vol., no., pp.19,26, July 29 2009-Aug. 1 2009

[21] G.R. Arce, "Nonlinear Signal Processing: A Statistical Approach",
Wiley:New Jersey, USA, 2005.

[22] Gallego, Á.; Mora, J.; Otero, A.; de la Torre, E.; Riesgo, T.; Salvador, R;
"A Novel FPGA-based Evolvable Hardware System based on Multiple
Processing Arrays", Reconfigurable Architectures Workshop, Parallel &
Distributed Processing, 2013. IPDPS 2013. IEEE International
Symposium on.

(1)

(2)

(3)

(4)

(5)

(a) (b) (c) (d)

Fig. 12 Some of the obtained results. (a) Input frame used for training. (b) Result of filtering such frame. (c) Another frame in the sequence. (d) Result of
filtering frame in (c) with the filter trained with (a). Rows show 5%, 10% and 20% salt and pepper noise, 5% impulse noise, and 5% burst noise.

