7,072 research outputs found

    Under vehicle perception for high level safety measures using a catadioptric camera system

    Get PDF
    In recent years, under vehicle surveillance and the classification of the vehicles become an indispensable task that must be achieved for security measures in certain areas such as shopping centers, government buildings, army camps etc. The main challenge to achieve this task is to monitor the under frames of the means of transportations. In this paper, we present a novel solution to achieve this aim. Our solution consists of three main parts: monitoring, detection and classification. In the first part we design a new catadioptric camera system in which the perspective camera points downwards to the catadioptric mirror mounted to the body of a mobile robot. Thanks to the catadioptric mirror the scenes against the camera optical axis direction can be viewed. In the second part we use speeded up robust features (SURF) in an object recognition algorithm. Fast appearance based mapping algorithm (FAB-MAP) is exploited for the classification of the means of transportations in the third part. Proposed technique is implemented in a laboratory environment

    Automated detection of block falls in the north polar region of Mars

    Full text link
    We developed a change detection method for the identification of ice block falls using NASA's HiRISE images of the north polar scarps on Mars. Our method is based on a Support Vector Machine (SVM), trained using Histograms of Oriented Gradients (HOG), and on blob detection. The SVM detects potential new blocks between a set of images; the blob detection, then, confirms the identification of a block inside the area indicated by the SVM and derives the shape of the block. The results from the automatic analysis were compared with block statistics from visual inspection. We tested our method in 6 areas consisting of 1000x1000 pixels, where several hundreds of blocks were identified. The results for the given test areas produced a true positive rate of ~75% for blocks with sizes larger than 0.7 m (i.e., approx. 3 times the available ground pixel size) and a false discovery rate of ~8.5%. Using blob detection we also recover the size of each block within 3 pixels of their actual size

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    T-spline based unifying registration procedure for free-form surface workpieces in intelligent CMM

    Get PDF
    With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs). To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs

    InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

    Get PDF
    We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data

    Shape and Texture Combined Face Recognition for Detection of Forged ID Documents

    Get PDF
    This paper proposes a face recognition system that can be used to effectively match a face image scanned from an identity (ID) doc-ument against the face image stored in the biometric chip of such a document. The purpose of this specific face recognition algorithm is to aid the automatic detection of forged ID documents where the photography printed on the document’s surface has been altered or replaced. The proposed algorithm uses a novel combination of texture and shape features together with sub-space representation techniques. In addition, the robustness of the proposed algorithm when dealing with more general face recognition tasks has been proven with the Good, the Bad & the Ugly (GBU) dataset, one of the most challenging datasets containing frontal faces. The proposed algorithm has been complement-ed with a novel method that adopts two operating points to enhance the reliability of the algorithm’s final verification decision.Final Accepted Versio
    corecore