17,956 research outputs found

    Beyond XSPEC: Towards Highly Configurable Analysis

    Full text link
    We present a quantitative comparison between software features of the defacto standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive Spectral Interpretation System. Our emphasis is on customized analysis, with ISIS offered as a strong example of configurable software. While noting that XSPEC has been of immense value to astronomers, and that its scientific core is moderately extensible--most commonly via the inclusion of user contributed "local models"--we identify a series of limitations with its use beyond conventional spectral modeling. We argue that from the viewpoint of the astronomical user, the XSPEC internal structure presents a Black Box Problem, with many of its important features hidden from the top-level interface, thus discouraging user customization. Drawing from examples in custom modeling, numerical analysis, parallel computation, visualization, data management, and automated code generation, we show how a numerically scriptable, modular, and extensible analysis platform such as ISIS facilitates many forms of advanced astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages

    SPH Simulations of Direct Impact Accretion in the Ultracompact AM CVn Binaries

    Full text link
    The ultracompact binary systems V407 Vul (RX J1914.4+2456) and HM Cnc (RX J0806.3+1527) - a two-member subclass of the AM CVn stars - continue to pique interest because they defy unambiguous classification. Three proposed models remain viable at this time, but none of the three is significantly more compelling than the remaining two, and all three can satisfy the observational constraints if parameters in the models are tuned. One of the three proposed models is the direct impact model of Marsh & Steeghs (2002), in which the accretion stream impacts the surface of a rapidly-rotating primary white dwarf directly but at a near-glancing angle. One requirement of this model is that the accretion stream have a high enough density to advect its specific kinetic energy below the photosphere for progressively more-thermalized emission downstream, a constraint that requires an accretion spot size of roughly 1.2x10^5 km^2 or smaller. Having at hand a smoothed particle hydrodynamics code optimized for cataclysmic variable accretion disk simulations, it was relatively straightforward for us to adapt it to calculate the footprint of the accretion stream at the nominal radius of the primary white dwarf, and thus to test this constraint of the direct impact model. We find that the mass flux at the impact spot can be approximated by a bivariate Gaussian with standard deviation \sigma_{\phi} = 164 km in the orbital plane and \sigma_{\theta} = 23 km in the perpendicular direction. The area of the the 2\sigma ellipse into which 86% of the mass flux occurs is roughly 47,400 km^2, or roughly half the size estimated by Marsh & Steeghs (2002). We discuss the necessary parameters of a simple model of the luminosity distribution in the post-impact emission region.Comment: 24 pages, 5 figures, Accepted for publication in Ap

    Advanced detection, isolation, and accommodation of sensor failures in turbofan engines: Real-time microcomputer implementation

    Get PDF
    The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming

    Similar phenomena at different scales: Black Holes, the Sun, Gamma-ray Bursts, Supernovae, Galaxies and Galaxy Clusters

    Get PDF
    Many similar phenomena occur in astrophysical systems with spatial and mass scales different by many orders of magnitudes. For examples, collimated outflows are produced from the Sun, proto-stellar systems, gamma-ray bursts, neutron star and black hole X-ray binaries, and supermassive black holes; various kinds of flares occur from the Sun, stellar coronae, X-ray binaries and active galactic nuclei; shocks and particle acceleration exist in supernova remnants, gamma-ray bursts, clusters of galaxies, etc. In this report I summarize briefly these phenomena and possible physical mechanisms responsible for them. I emphasize the importance of using the Sun as an astrophysical laboratory in studying these physical processes, especially the roles magnetic fields play in them; it is quite likely that magnetic activities dominate the fundamental physical processes in all of these systems. As a case study, I show that X-ray lightcurves from solar flares, black hole binaries and gamma-ray bursts exhibit a common scaling law of non-linear dynamical properties, over a dynamical range of several orders of magnitudes in intensities, implying that many basic X-ray emission nodes or elements are inter-connected over multi-scales. A future high timing and imaging resolution solar X-ray instrument, aimed at isolating and resolving the fundamental elements of solar X-ray lightcurves, may shed new lights onto the fundamental physical mechanisms, which are common in astrophysical systems with vastly different mass and spatial scales. Using the Sun as an astrophysical laboratory, "Applied Solar Astrophysics" will deepen our understanding of many important astrophysical problems.Comment: 22 pages, 13 figures, invited discourse for the 26th IAU GA, Prague, Czech Republic, Aug. 2006, to be published in Vol. 14 IAU Highlights of Astronomy, Ed. K.A. van der Hucht. Revised slightly to match the final submitted version, after incorporating comments and suggestions from several colleagues. A full-resolution version is available on request from the author at [email protected]

    Astrophysics of Super-massive Black Hole Mergers

    Get PDF
    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.Comment: Invited article for the focus issue on astrophysical black holes in Classical and Quantum Gravity, guest editors: D. Merritt and L. Rezzoll

    Stochastic Modeling of Hybrid Cache Systems

    Full text link
    In recent years, there is an increasing demand of big memory systems so to perform large scale data analytics. Since DRAM memories are expensive, some researchers are suggesting to use other memory systems such as non-volatile memory (NVM) technology to build large-memory computing systems. However, whether the NVM technology can be a viable alternative (either economically and technically) to DRAM remains an open question. To answer this question, it is important to consider how to design a memory system from a "system perspective", that is, incorporating different performance characteristics and price ratios from hybrid memory devices. This paper presents an analytical model of a "hybrid page cache system" so to understand the diverse design space and performance impact of a hybrid cache system. We consider (1) various architectural choices, (2) design strategies, and (3) configuration of different memory devices. Using this model, we provide guidelines on how to design hybrid page cache to reach a good trade-off between high system throughput (in I/O per sec or IOPS) and fast cache reactivity which is defined by the time to fill the cache. We also show how one can configure the DRAM capacity and NVM capacity under a fixed budget. We pick PCM as an example for NVM and conduct numerical analysis. Our analysis indicates that incorporating PCM in a page cache system significantly improves the system performance, and it also shows larger benefit to allocate more PCM in page cache in some cases. Besides, for the common setting of performance-price ratio of PCM, "flat architecture" offers as a better choice, but "layered architecture" outperforms if PCM write performance can be significantly improved in the future.Comment: 14 pages; mascots 201
    corecore