2 research outputs found

    Algorithms and architecture for multiusers, multi-terminal, multi-layer information theoretic security

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 161-164).As modern infrastructure systems become increasingly more complex, we are faced with many new challenges in the area of information security. In this thesis we examine some approaches to security based on ideas from information theory. The protocols considered in this thesis, build upon the "wiretap channel," a model for physical layer security proposed by A. Wyner in 1975. At a higher level, the protocols considered here can strengthen existing mechanisms for security by providing a new location based approach at the physical layer.In the first part of this thesis, we extend the wiretap channel model to the case when there are multiple receivers, each experiencing a time varying fading channel. Both the scenario when each legitimate receiver wants a common message as well as the scenario when they all want separate messages are studied and capacity results are established in several special cases. When each receiver wants a separate independent message, an opportunistic scheme that transmits to the strongest user at each time, and uses Gaussian codebooks is shown to achieve the sum secrecy capacity in the limit of many users. When each receiver wants a common message, a lower bound to the capacity is provided, independent of the number of receivers. In the second part of the thesis the role of multiple antennas for secure communication studied. We establish the secrecy capacity of the multi antenna wiretap channel (MIMOME channel), when the channel matrices of the legitimate receiver and eavesdropper are fixed and known to all the terminals. To establish the capacity, a new computable upper bound on the secrecy capacity of the wiretap channel is developed, which may be of independent interest. It is shown that Gaussian codebooks suffice to attain the capacity for this problem. For the case when the legitimate receiver has a single antenna (MISOME channel) a rank one transmission scheme is shown to attain the capacity.(CONT.) In the high signal-to-noise ratio (SNR) regime, it is shown that a capacity achieving scheme involves simultaneous diagonalization of the channel matrices using the generalized singular value decomposition and independently coding accross the resulting parallel channels. Furthermore a semi-blind masked beamforming scheme is studied, which transmits signal of interest in the subspace of the legitimate receiver's channel and synthetic noise in the orthogonal subspace. It is shown that this scheme is nearly optimal in the high SNR regime for the MISOME case and the performance penalty for the MIMOME channel is evaluated in terms of the generalized singular values. The behavior of the secrecy capacity in the limit of many antennas is also studied. When the channel matrices have i.i.d. CN(O, 1) entries, we show that (1) the secrecy capacity for the MISOME channel converges (almost surely) to zero if and only if the eavesdropper increases its antennas at a rate twice as fast as the sender (2) when a total of T >> 1 antennas have to be allocated between the sender and the receiver, the optimal allocation, which maximizes the number of eavesdropping antennas for zero secrecy capacity is 2 : 1. In the final part of the thesis, we consider a variation of the wiretap channel where the sender and legitimate receiver also have access to correlated source sequences. They use both the sources and the structure of the underlying channel to extract secret keys. We provide general upper and lower bounds on the secret key rate and establish the capacity for the reversely degraded case.by Ashish Khisti.Ph.D

    Generating secret in a network

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 247-253) and index.This monograph studies the theory of information through the multiuser secret key agreement problem. A general notion of mutual dependence is established for the secrecy capacity, as a natural generalization of Shannon's mutual information to the multivariate case. Under linear-type source models, this capacity can be achieved practically by linear network codes. In addition to being an unusual application of the network coding solution to a secrecy problem, it gives secrecy capacity an interpretation of network information flow and partition connectivity, further confirming the intuitive meaning of secrecy capacity as mutual dependence. New identities in submodular function optimization and matroid theory are discovered in proving these results. A framework is also developed to view matroids as graphs, allowing certain theory on graphs to generalize to matroids. In order to study cooperation schemes in a network, a general channel model with multiple inputs is formulated. Single-letter secrecy capacity upper bounds are derived using the Shearer-type lemma. Lower bounds are obtained with a new cooperation scheme called the mixed source emulation. In the same way that mixed strategies may surpass pure strategies in zero-sum games, mixed source emulation outperforms the conventional pure source emulation approach in terms of the achievable key rate. Necessary and sufficient conditions are derived for tightness of these secrecy bounds, which shows that secrecy capacity can be characterized for a larger class of channels than the broadcast-type channels considered in previous work. The mixed source emulation scheme is also shown to be unnecessary for some channels while insufficient for others. The possibility of a better cooperative scheme becomes apparent, but a general scheme remains to be found.by Chung Chan.Ph.D
    corecore