1,661 research outputs found

    What Is Around The Camera?

    Get PDF
    How much does a single image reveal about the environment it was taken in? In this paper, we investigate how much of that information can be retrieved from a foreground object, combined with the background (i.e. the visible part of the environment). Assuming it is not perfectly diffuse, the foreground object acts as a complexly shaped and far-from-perfect mirror. An additional challenge is that its appearance confounds the light coming from the environment with the unknown materials it is made of. We propose a learning-based approach to predict the environment from multiple reflectance maps that are computed from approximate surface normals. The proposed method allows us to jointly model the statistics of environments and material properties. We train our system from synthesized training data, but demonstrate its applicability to real-world data. Interestingly, our analysis shows that the information obtained from objects made out of multiple materials often is complementary and leads to better performance.Comment: Accepted to ICCV. Project: http://homes.esat.kuleuven.be/~sgeorgou/multinatillum

    Video Frame Interpolation for High Dynamic Range Sequences Captured with Dual-exposure Sensors

    Get PDF
    Video frame interpolation (VFI) enables many important applications thatmight involve the temporal domain, such as slow motion playback, or the spatialdomain, such as stop motion sequences. We are focusing on the former task,where one of the key challenges is handling high dynamic range (HDR) scenes inthe presence of complex motion. To this end, we explore possible advantages ofdual-exposure sensors that readily provide sharp short and blurry longexposures that are spatially registered and whose ends are temporally aligned.This way, motion blur registers temporally continuous information on the scenemotion that, combined with the sharp reference, enables more precise motionsampling within a single camera shot. We demonstrate that this facilitates amore complex motion reconstruction in the VFI task, as well as HDR framereconstruction that so far has been considered only for the originally capturedframes, not in-between interpolated frames. We design a neural network trainedin these tasks that clearly outperforms existing solutions. We also propose ametric for scene motion complexity that provides important insights into theperformance of VFI methods at the test time.<br

    LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video Reconstruction

    Full text link
    As demands for high-quality videos continue to rise, high-resolution and high-dynamic range (HDR) imaging techniques are drawing attention. To generate an HDR video from low dynamic range (LDR) images, one of the critical steps is the motion compensation between LDR frames, for which most existing works employed the optical flow algorithm. However, these methods suffer from flow estimation errors when saturation or complicated motions exist. In this paper, we propose an end-to-end HDR video composition framework, which aligns LDR frames in the feature space and then merges aligned features into an HDR frame, without relying on pixel-domain optical flow. Specifically, we propose a luminance-based alignment network for HDR (LAN-HDR) consisting of an alignment module and a hallucination module. The alignment module aligns a frame to the adjacent reference by evaluating luminance-based attention, excluding color information. The hallucination module generates sharp details, especially for washed-out areas due to saturation. The aligned and hallucinated features are then blended adaptively to complement each other. Finally, we merge the features to generate a final HDR frame. In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering. Extensive experiments demonstrate that our method performs better or comparable to state-of-the-art methods on several benchmarks.Comment: ICCV 202
    • …
    corecore