1,811 research outputs found

    Manifold-valued Image Generation with Wasserstein Generative Adversarial Nets

    Full text link
    Generative modeling over natural images is one of the most fundamental machine learning problems. However, few modern generative models, including Wasserstein Generative Adversarial Nets (WGANs), are studied on manifold-valued images that are frequently encountered in real-world applications. To fill the gap, this paper first formulates the problem of generating manifold-valued images and exploits three typical instances: hue-saturation-value (HSV) color image generation, chromaticity-brightness (CB) color image generation, and diffusion-tensor (DT) image generation. For the proposed generative modeling problem, we then introduce a theorem of optimal transport to derive a new Wasserstein distance of data distributions on complete manifolds, enabling us to achieve a tractable objective under the WGAN framework. In addition, we recommend three benchmark datasets that are CIFAR-10 HSV/CB color images, ImageNet HSV/CB color images, UCL DT image datasets. On the three datasets, we experimentally demonstrate the proposed manifold-aware WGAN model can generate more plausible manifold-valued images than its competitors.Comment: Accepted by AAAI 201

    Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

    Full text link
    The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data. Our framework has three contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.Comment: Accepted by Medical Image Analysis (with a new title 'Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis'). The manuscript is available from following link (https://doi.org/10.1016/j.media.2019.06.005

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Combined Denoising and Suppression of Transient Artifacts in Arterial Spin Labeling MRI Using Deep Learning

    Get PDF
    Background: Arterial spin labeling (ASL) is a useful tool for measuring cerebral blood flow (CBF). However, due to the low signal-to-noise ratio (SNR) of the technique, multiple repetitions are required, which results in prolonged scan times and increased susceptibility to artifacts. Purpose: To develop a deep-learning-based algorithm for simultaneous denoising and suppression of transient artifacts in ASL images. Study Type: Retrospective. Subjects: 131 pediatric neuro-oncology patients for model training and 11 healthy adult subjects for model evaluation. Field Strength/Sequence: 3T / pseudo-continuous and pulsed ASL with 3D gradient-and-spin-echo readout. Assessment: A denoising autoencoder (DAE) model was designed with stacked encoding/decoding convolutional layers. Reference standard images were generated by averaging 10 pairwise ASL subtraction images. The model was trained to produce perfusion images of a similar quality using a single subtraction image. Performance was compared against Gaussian and non-local means (NLM) filters. Evaluation metrics included SNR, peak SNR (PSNR), and structural similarity index (SSIM) of the CBF images, compared to the reference standard. Statistical Tests: One-way analysis of variance (ANOVA) tests for group comparisons. Results: The DAE model was the only model to produce a significant increase in SNR compared to the raw images (P < 0.05), providing an average SNR gain of 62%. The DAE model was also effective at suppressing transient artifacts, and was the only model to show a significant improvement in accuracy in the generated CBF images, as assessed using PSNR values (P < 0.05). In addition, using data from multiple inflow time acquisitions, the DAE images produced the best fit to the Buxton kinetic model, offering a 75% reduction in the fitting error compared to the raw images. Data Conclusion: Deep-learning-based algorithms provide superior accuracy when denoising ASL images, due to their ability to simultaneously increase SNR and suppress artifactual signals in raw ASL images. Level of Evidence: 3. Technical Efficacy Stage: 1

    Knowledge-driven deep learning for fast MR imaging: undersampled MR image reconstruction from supervised to un-supervised learning

    Full text link
    Deep learning (DL) has emerged as a leading approach in accelerating MR imaging. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MR imaging involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MR imaging along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.Comment: 46 pages, 5figures, 1 tabl

    Is attention all you need in medical image analysis? A review

    Full text link
    Medical imaging is a key component in clinical diagnosis, treatment planning and clinical trial design, accounting for almost 90% of all healthcare data. CNNs achieved performance gains in medical image analysis (MIA) over the last years. CNNs can efficiently model local pixel interactions and be trained on small-scale MI data. The main disadvantage of typical CNN models is that they ignore global pixel relationships within images, which limits their generalisation ability to understand out-of-distribution data with different 'global' information. The recent progress of Artificial Intelligence gave rise to Transformers, which can learn global relationships from data. However, full Transformer models need to be trained on large-scale data and involve tremendous computational complexity. Attention and Transformer compartments (Transf/Attention) which can well maintain properties for modelling global relationships, have been proposed as lighter alternatives of full Transformers. Recently, there is an increasing trend to co-pollinate complementary local-global properties from CNN and Transf/Attention architectures, which led to a new era of hybrid models. The past years have witnessed substantial growth in hybrid CNN-Transf/Attention models across diverse MIA problems. In this systematic review, we survey existing hybrid CNN-Transf/Attention models, review and unravel key architectural designs, analyse breakthroughs, and evaluate current and future opportunities as well as challenges. We also introduced a comprehensive analysis framework on generalisation opportunities of scientific and clinical impact, based on which new data-driven domain generalisation and adaptation methods can be stimulated
    • …
    corecore