3,258 research outputs found

    Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis

    Get PDF
    Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing

    Novel miniature MRI-compatible fiber-optic force sensor for cardiac catherization procedures

    Get PDF
    Proceedings of: 2010 IEEE International Conference on Robotics and Automation (ICRA'10), May 3-8, 2010, Anchorage (Alaska, USA)This paper presents the prototype design and development of a miniature MR-compatible fiber optic force sensor suitable for the detection of force during MR-guided cardiac catheterization. The working principle is based on light intensity modulation where a fiber optic cable interrogates a reflective surface at a predefined distance inside a catheter shaft. When a force is applied to the tip of the catheter, a force sensitive structure varies the distance and the orientation of the reflective surface with reference to the optical fiber. The visual feedback from the MRI scanner can be used to determine whether or not the catheter tip is normal or tangential to the tissue surface. In both cases the light is modulated accordingly and the axial or lateral force can be estimated. The sensor exhibits adequate linear response, having a good working range, very good resolution and good sensitivity in both axial and lateral force directions. In addition, the use of low-cost and MR-compatible materials for its development makes the sensor safe for use inside MRI environments.European Community's Seventh Framework Progra

    Shape Memory Alloy Actuators and Sensors for Applications in Minimally Invasive Interventions

    Get PDF
    Reduced access size in minimally invasive surgery and therapy (MIST) poses several restriction on the design of the dexterous robotic instruments. The instruments should be developed that are slender enough to pass through the small sized incisions and able to effectively operate in a compact workspace. Most existing robotic instruments are operated by big actuators, located outside the patient’s body, that transfer forces to the end effector via cables or magnetically controlled actuation mechanism. These instruments are certainly far from optimal in terms of their cost and the space they require in operating room. The lack of adequate sensing technologies make it very challenging to measure bending of the flexible instruments, and to measure tool-tissue contact forces of the both flexible and rigid instruments during MIST. Therefore, it requires the development of the cost effective miniature actuators and strain/force sensors. Having several unique features such as bio-compatibility, low cost, light weight, large actuation forces and electrical resistivity variations, the shape memory alloys (SMAs) show promising applications both as the actuators and strain sensors in MIST. However, highly nonlinear hysteretic behavior of the SMAs hinders their use as actuators. To overcome this problem, an adaptive artificial neural network (ANN) based Preisach model and a model predictive controller have been developed in this thesis to precisely control the output of the SMA actuators. A novel ultra thin strain sensor is also designed using a superelastic SMA wire, which can be used to measure strain and forces for many surgical and intervention instruments. A da Vinci surgical instrument is sensorized with these sensors in order to validate their force sensing capability

    Optical-Fiber Measurement Systems for Medical Applications

    Get PDF

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text
    • …
    corecore