2,079,373 research outputs found

    Welfare Maximization with Limited Interaction

    Full text link
    We continue the study of welfare maximization in unit-demand (matching) markets, in a distributed information model where agent's valuations are unknown to the central planner, and therefore communication is required to determine an efficient allocation. Dobzinski, Nisan and Oren (STOC'14) showed that if the market size is nn, then rr rounds of interaction (with logarithmic bandwidth) suffice to obtain an n1/(r+1)n^{1/(r+1)}-approximation to the optimal social welfare. In particular, this implies that such markets converge to a stable state (constant approximation) in time logarithmic in the market size. We obtain the first multi-round lower bound for this setup. We show that even if the allowable per-round bandwidth of each agent is nϵ(r)n^{\epsilon(r)}, the approximation ratio of any rr-round (randomized) protocol is no better than Ω(n1/5r+1)\Omega(n^{1/5^{r+1}}), implying an Ω(loglogn)\Omega(\log \log n) lower bound on the rate of convergence of the market to equilibrium. Our construction and technique may be of interest to round-communication tradeoffs in the more general setting of combinatorial auctions, for which the only known lower bound is for simultaneous (r=1r=1) protocols [DNO14]

    Bisector energy and few distinct distances

    Get PDF
    We introduce the bisector energy of an nn-point set PP in R2\mathbb{R}^2, defined as the number of quadruples (a,b,c,d)(a,b,c,d) from PP such that aa and bb determine the same perpendicular bisector as cc and dd. If no line or circle contains M(n)M(n) points of PP, then we prove that the bisector energy is O(M(n)25n125+ϵ+M(n)n2).O(M(n)^{\frac{2}{5}}n^{\frac{12}{5}+\epsilon} + M(n)n^2).. We also prove the lower bound Ω(M(n)n2)\Omega(M(n)n^2), which matches our upper bound when M(n)M(n) is large. We use our upper bound on the bisector energy to obtain two rather different results: (i) If PP determines O(n/logn)O(n/\sqrt{\log n}) distinct distances, then for any 0<α1/40<\alpha\le 1/4, either there exists a line or circle that contains nαn^\alpha points of PP, or there exist Ω(n8/512α/5ϵ)\Omega(n^{8/5-12\alpha/5-\epsilon}) distinct lines that contain Ω(logn)\Omega(\sqrt{\log n}) points of PP. This result provides new information on a conjecture of Erd\H{o}s regarding the structure of point sets with few distinct distances. (ii) If no line or circle contains M(n)M(n) points of PP, then the number of distinct perpendicular bisectors determined by PP is Ω(min{M(n)2/5n8/5ϵ,M(n)1n2})\Omega(\min\{M(n)^{-2/5}n^{8/5-\epsilon}, M(n)^{-1} n^2\}). This appears to be the first higher-dimensional example in a framework for studying the expansion properties of polynomials and rational functions over R\mathbb{R}, initiated by Elekes and R\'onyai.Comment: 18 pages, 2 figure

    Upper and lower limits on the number of bound states in a central potential

    Full text link
    In a recent paper new upper and lower limits were given, in the context of the Schr\"{o}dinger or Klein-Gordon equations, for the number N0N_{0} of S-wave bound states possessed by a monotonically nondecreasing central potential vanishing at infinity. In this paper these results are extended to the number NN_{\ell} of bound states for the \ell-th partial wave, and results are also obtained for potentials that are not monotonic and even somewhere positive. New results are also obtained for the case treated previously, including the remarkably neat \textit{lower} limit N{{[σ/(2+1)+1]/2}}N_{\ell}\geq \{\{[\sigma /(2\ell+1)+1]/2\}\} with V(r)1/2]% \sigma =(2/\pi) \underset{0\leq r<\infty}{\max}[r| V(r)| ^{1/2}] (valid in the Schr\"{o}dinger case, for a class of potentials that includes the monotonically nondecreasing ones), entailing the following \textit{lower} limit for the total number NN of bound states possessed by a monotonically nondecreasing central potential vanishing at infinity: N\geq \{\{(\sigma+1)/2\}\} {(\sigma+3)/2\} \}/2 (here the double braces denote of course the integer part).Comment: 44 pages, 5 figure
    corecore