3,749 research outputs found

    A low-rank matrix equation method for solving PDE-constrained optimization problems

    Get PDF
    PDE-constrained optimization problems arise in a broad number of applications such as hyperthermia cancer treatment and blood flow simulation. Discretization of the optimization problem and using a Lagrangian approach result in a large-scale saddle-point system, which is challenging to solve, and acquiring a full space-time solution is often infeasible. We present a new framework to efficiently compute a low-rank approximation to the solution by reformulating the KKT system into a Sylvester-like matrix equation. This matrix equation is subsequently projected onto a small subspace via an iterative rational Krylov method, and we obtain a reduced problem by imposing a Galerkin condition on its residual. In our work we discuss implementation details and dependence on the various problem parameters. Numerical experiments illustrate the performance of the new strategy also when compared to other low-rank approaches

    Multilevel quasiseparable matrices in PDE-constrained optimization

    Get PDF
    Optimization problems with constraints in the form of a partial differential equation arise frequently in the process of engineering design. The discretization of PDE-constrained optimization problems results in large-scale linear systems of saddle-point type. In this paper we propose and develop a novel approach to solving such systems by exploiting so-called quasiseparable matrices. One may think of a usual quasiseparable matrix as of a discrete analog of the Green's function of a one-dimensional differential operator. Nice feature of such matrices is that almost every algorithm which employs them has linear complexity. We extend the application of quasiseparable matrices to problems in higher dimensions. Namely, we construct a class of preconditioners which can be computed and applied at a linear computational cost. Their use with appropriate Krylov methods leads to algorithms of nearly linear complexity

    A penalty method for PDE-constrained optimization in inverse problems

    Full text link
    Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal, then, is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand-sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the paramaters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the non-linearity of the problem and is less sensitive the initial iterate
    corecore