33 research outputs found

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    INJECTION-LOCKING TECHNIQUES FOR MULTI-CHANNEL ENERGY EFFICIENT TRANSMITTER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Automated Channel Assessment for Single Chip MedRadio Transceivers

    Get PDF
    Modern implantable and body worn medical devices leverage wireless telemetry to improve patient experience and expand therapeutic options. Wireless medical devices are subject to a unique set of regulations in which monitoring of the available frequency spectrum is a requirement. To this end, implants use software protocols to assess the in-band activity to determine which channel should be used. These software protocols take valuable processing time and possibly degrade the operational lifetime of the battery. Implantable medical devices often take advantage of a single chip transceiver as the physical layer for wireless communications. Embedding the channel assessment task in the transceiver hardware would free the limited resources of the microprocessor. This thesis proposes hardware modifications to existing transceiver architectures which would provide an automated channel assessment means for implantable medical devices. The results are applicable beyond medical device applications and could be employed to benefit any low-power, wireless, battery-operated equipment

    RĂ©cepteur Sans-Fil Ă  Basse Consommation et Ă  Modulation Mixte FSK-ASK pour les Dispositifs MĂ©dicaux

    Get PDF
    RÉSUMÉ Les Ă©metteurs-rĂ©cepteurs radiofrĂ©quences (RF) offrent le lien de communications le plus commun afin de mettre au point des dispositifs mĂ©dicaux implantables dĂ©diĂ©s aux interfaces homme-machines. La surveillance en continu des paramĂštres biologiques des patients nĂ©cessite un module de communication sans-fil capable de garantir un Ă©change de donnĂ©es rapide, en temps rĂ©el, Ă  faible puissance tout en Ă©tant implĂ©mentĂ© dans un espace physique rĂ©duit. La consommation de puissance des dispositifs implantables joue un rĂŽle important dans les durĂ©es de vie des batteries qui nĂ©cessitent une chirurgie pour leur remplacement, Ă  moins qu’une technique de transfert de puissance sans-fil soit utilisĂ©e pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implĂ©mentĂ© et testĂ© un rĂ©cepteur RF Ă  faible puissance et haut-dĂ©bit de donnĂ©es opĂ©rant entre 902 et 928 MHz qui est la bande industrielle-scientifiquemĂ©dicale (Industrial, Scientific and Medical) d’AmĂ©rique du Nord. Ce rĂ©cepteur fait partie d’un systĂšme de communication bidirectionnel dĂ©diĂ© Ă  l’interface sans-fil des dispositifs Ă©lectroniques implantables et bĂ©nĂ©ficie d’une nouvelle technique de conversion de modulation par dĂ©placement de frĂ©quence (FSK) en Modulation par dĂ©placement d’amplitude (ASK). Toutes les phases de conception et d’implĂ©mentation de la topologie adoptĂ©e pour les rĂ©cepteurs RF sont survolĂ©es et discutĂ©es dans cette thĂšse. Les diffĂ©rents Ă©tages de circuits sont conçus selon une Ă©tude analytique fondĂ©e de la modulation FSK et ASK utilisĂ©es, ce qui permettra une amĂ©lioration des performances notamment le dĂ©bit de transmission des donnĂ©es et la consommation de puissance. Tous les circuits sont rĂ©alisĂ©s de façon Ă  ce que la consommation totale et la surface de silicium Ă  rĂ©server soient le minimum possible. Un oscillateur avec verrouillage par injection (Injection-Looked Oscillator - ILO) de faible puissance est rĂ©alisĂ© pour assurer la conversion des signaux ASK en FSK. Une combinaison des avantages des deux architectures de modulation d’amplitude et de frĂ©quence, pour les circuits d’émetteurrĂ©cepteur sans fil, a Ă©tĂ© rĂ©alisĂ© avec le systĂšme proposĂ©. Un module incluant un rĂ©cepteur de rĂ©veil (Wake up) est ajoutĂ© afin d’optimiser la consommation totale du circuit en mettant tous les blocs Ă  l’arrĂȘt. Nous avons rĂ©alisĂ© un rĂ©cepteur de rĂ©veil RF compact et Ă  faible coĂ»t, permettant de trĂšs faible niveaux de consommation d’énergie, une bonne sensibilitĂ© et une meilleure tolĂ©rance aux interfĂ©rences. Le design est basĂ© sur une topologie homodyne Ă  dĂ©tection d’enveloppe permettant une transposition directe du signal RF modulĂ© en amplitude en un signal en bande de base. Cette architecture nĂ©cessite une architecture peu encombrante Ă  intĂ©grer qui Ă©limine le problĂšme des frĂ©quences image pour la mĂȘme topologie avec une modulation de frĂ©quence.---------- ABSTRACT ISM band transceiver using a wake-up bloc for wireless body area networks (WBANs) wearable and implantable medical devices is proposed. The system achieves exceptionally low-power consumption and allows a high-data rate by combining the advantages of Frequency-Shift-Keying (FSK) and Amplitude-Shift- Keying (ASK) modulation techniques. The transceiver employs FSK modulation at a data rate of 8 Mbit/s to establish RF link among the medical device and a control unit. Transmitter (Tx) includes a new efficient FSK modulation scheme which offer up to 20 Mb/s of data-rate and dissipates around 0.084 nJ/b. The design of the proposed oscillator achieves variable frequency from 300 kHz to 8 MHz by adjusting the transistors geometry, the on-chip control signal and the tuning capacitors. In the transmitter path, the high-quality LOs Inand Quadrature-phase (I and Q) outputs are produced using a very low-power fully integrated integer-N frequency synthesizer. The architecture of the receiver is inspired from the super-regenerative receiver (SRR) topology which can be used to design a transceiver that is suitable for ASK modulation. In fact, this architecture is based mainly on envelope detection scheme which remove the need to process the carrier phase to reduce the complexity of integrated design. It has been shown too, that the envelope detection scheme is more robust to phase noise than the coherent scheme. The integrated receiver uses on a new FSK-to-ASK conversion technique. The conversion feature that we adopt in the main receiver design is based on the fact that the incident frequency of converter could be differentiated by the amplitude of output signal, which conducts to the frequency-to-amplitude conversion. Thanks to the injection locking oscillator (ILO). the new design of converter is located between the LNA as first part and the envelope detector as second part to benefit from the injection-locking isolation. On-Off-keying (OOK) fully passive wake-up circuit (WuRx) with energy harvesting from Radio Frequency (RF) link is used to optimize the power issipation of the RF transceiver in order to meet the low power requirement. The WuRx operates at the ISM 902–928 MHz. A high efficiency differential rectifier behaves as voltage multiplier. It generates the envelope of the input signal and provides the supply voltage for the rest of blocks including a low-power comparator and reference generators

    Low-Power High Data-Rate Wireless Transmitter For Medical Implantable Devices

    Get PDF
    RÉSUMÉ Les Ă©metteurs-rĂ©cepteurs radiofrĂ©quences (RF) sont les circuits de communication les plus communs pour Ă©tablir des interfaces home-machine dĂ©diĂ©es aux dispositifs mĂ©dicaux implantables. Par exemple, la surveillance continue de paramĂštres de santĂ© des patients souffrant d'Ă©pilepsie nĂ©cessite un Ă©tage de communication sans-fil capable de garantir un transfert de donnĂ©es rapide, en temps rĂ©el, Ă  faible puissance tout en Ă©tant implĂ©mentĂ© dans un faible volume. La consommation de puissance des dispositifs implantables implique une durĂ©e de vie limitĂ©e de la batterie qui nĂ©cessite alors une chirurgie pour son remplacement, a moins qu’une technique de transfert de puissance sans-fil soit utilisĂ©e pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implĂ©mentĂ© et testĂ© un Ă©metteur RF Ă  faible puissance et haut-dĂ©bit de donnĂ©es opĂ©rant Ă  902-928 MHz de la bande frĂ©quentielle industrielle-scientifique-mĂ©dicale (ISM) d’AmĂ©rique du Nord. Cet Ă©metteur fait partie d'un systĂšme de communication bidirectionnel dĂ©diĂ© Ă  l’interface sans-fil des dispositifs Ă©lectroniques implantables et mettables et bĂ©nĂ©ficie d’une nouvelle approche de modulation par dĂ©placement de frĂ©quence (FSK). Les diffĂ©rentes Ă©tapes de conception et d’implĂ©mentation de l'architecture proposĂ©e pour l'Ă©metteur sont discutĂ©es et analysĂ©es dans cette thĂšse. Les blocs de circuits sont rĂ©alisĂ©s suivant les Ă©quations dĂ©rivĂ©es de la modulation FSK proposĂ©e et qui mĂšnera Ă  l'amĂ©lioration du dĂ©bit de donnĂ©es et de la consommation d'Ă©nergie. Chaque bloc est implĂ©mentĂ© de maniĂšre Ă  ce que la consommation d'Ă©nergie et la surface de silicium nĂ©cessaires soient rĂ©duites. L’étage de modulation et le circuit mĂ©langeur ne nĂ©cessitent aucun courant continu grĂące Ă  leur structure passive.Parmi les circuits originaux, un oscillateur en quadrature contrĂŽlĂ©-en-tension (QVCO) de faible puissance est rĂ©alisĂ© pour gĂ©nĂ©rer des signaux diffĂ©rentiels en quadrature, rail-Ă -rail avec deux gammes de frĂ©quences principales de 0.3 Ă  11.5 MHz et de 3 Ă  40 MHz. L'Ă©tage de sortie Ă©nergivore est Ă©galement amĂ©liorĂ© et optimisĂ© pour atteindre une efficacitĂ© de puissance de ~ 37%. L'Ă©metteur proposĂ© a Ă©tĂ© implĂ©mentĂ© et fabriquĂ© Ă  la suite de simulations post-layout approfondies.----------ABSTRACT Wireless radio frequency (RF) transceivers are the most common communication front-ends used to realize the human-machine interfaces of medical devices. Continuous monitoring of body behaviour of patients suffering from Epilepsy, for example, requires a wireless communication front-end capable of maintaining a fast, real-time and low-power data communication while implemented in small size. Power budget limitation of the implantable and wearable medical devices obliges engineers to replace or recharge the battery cell through frequent medial surgeries or other power transfer techniques. In this project, a low-power and high data-rate RF transmitter (Tx) operating at North-American Industrial-Scientific-Medical (ISM) frequency band (902-928 MHz) is designed, implemented and tested. This transmitter is a part of a bi-directional transceiver dedicated to the wireless interface of implantable and wearable medical devices and benefits from a new efficient Frequency-Shift Keying (FSK) modulation scheme. Different design and implementation stages of the proposed transmitter architecture are discussed and analyzed in this thesis. The building blocks are realized according to the equations derived from the proposed FSK modulation, which results in improvement in data-rate and power consumption. Each block is implemented such that the power consumption and needed chip area are lowered while the modulation block and the mixer circuit require no DC current due to their passive structure. Among the original blocks, a low-power quadrature voltage-controlled oscillator (QVCO) is achieved to provide differential quadrature rail-to-rail signals with two main frequency ranges of 0.3-11.5 MHz and 3-40 MHz. The power-hungry output stage is also improved and optimized to achieve power efficiency of ~37%. The proposed transmitter was implemented and fabricated following deep characterisation by post-layout simulation. Both simulation and measurement results are discussed and compared with state-of-the-art transmitters showing the contribution of this work in this very popular research field. The Figure-Of-Merit (FOM) was improved, meaning mainly increasing the data-rate and lowering the power consumption of the circuit. The transmitter is implemented using 130 nm CMOS technology with 1.2 V supply voltage. A data-rate of 8 Mb/s was measured while consuming 1.4 mA and resulting in energy consumption of 0.21 nJ/b. The fabricated transmitter has small active silicon area of less than 0.25 mm2

    Bidirectional Wireless Telemetry for High Channel Count Optogenetic Microsystems

    Full text link
    In the past few decades, there has been a significant progress in the development of wireless data transmission systems, from high data rate to ultra-low power applications, and from G-b per second to RFID systems. One specific area, in particular, is in wireless data transmission for implantable bio-medical applications. To understand how brain functions, neural scientists are in pursuit of high-channel count, high-density recordings for freely moving animals; yet wire tethering issue has put the mission on pause. Wireless data transmission can address this tethering problem, but there are still many challenges to be conquered. In this work, an ultra-low power ultra-wide band (UWB) transmitter with feedforward pulse generation scheme is proposed to resolve the long-existing problem in UWB transmitter. It provides a high-data rate capability to enable 1000 channels in broadband neural recording, assuming 10-bit resolution with a sampling rate of 20 kHz to accommodate both action potential (AP) and local field potential (LFP) recording, while remaining in ultra- low power consumption at 4.32 pJ/b. For the bi-directional communication between the wireless and recording/ stimulating module, a bit-wise time-division (B-TDD) duplex transceiver without cancellation scheme is presented. The receiver works at U-NII band (5.2GHz) and shares the same antenna with UWB transmitter. This significantly reduces the area consumption as well as power consumption for implantable systems. The system can support uplink at 200 Mbps for 1000 recording channels and downlink at 10 Mbps for 36 stimulation channels. With a 3.7 Volt 25mAh rechargeable battery, the system should be able to operate more than 1.5 hours straight for both recording and stimulation, assuming 1 LED channel with 100 ”A, 10% duty-cycled stimulating current. The B-TDD transceiver is integrated with a dedicated recording/ stimulation optogenetic IC chip to demonstrate as a complete wireless system for implantable broadband optogenetic neural modulation and recording. The fully integrated system is less than 5 gram, which is suitable for rodent experiments.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155242/1/yujulin_1.pd

    Synthétiseur de fréquences RF destiné aux dispositifs médicaux implantables

    Get PDF
    RÉSUMÉ Les microsystĂšmes biomĂ©dicaux implantables prĂ©sentent un Ă©norme potentiel pour la recherche mĂ©dicale. Les dispositifs mĂ©dicaux intelligents implantables, qui combinent des capteurs et/ou des actuateurs avec des circuits intĂ©grĂ©s, ouvrent la voie Ă  des applications fascinantes. Aujourd’hui, la possibilitĂ© d’utiliser la technologie CMOS pour intĂ©grer des circuits RF, numĂ©riques, et mĂȘme certains types de capteurs sur une mĂȘme puce, suscite un vif intĂ©rĂȘt dans un domaine nouveau : celui des rĂ©seaux de capteurs implantables, ou BSN (Body-Sensor Networks) et leurs applications en recherche biomĂ©dicale. L’implantation dans le corps de tels rĂ©seaux de capteurs sans-fils permettrait de surveiller, dĂ©tecter ou mĂȘme combattre diffĂ©rentes maladies, et ce de maniĂšre in situ. Avec des dimensions minimales infĂ©rieures Ă  100 nm, la technologie CMOS reprĂ©sente un choix viable pour l’implĂ©mentation des blocs de bases des circuits intĂ©grĂ©s radio-frĂ©quences (Radio- Frequency Integrated Circuits - RFIC) Ă  faible consommation de puissance. Toutefois, la rĂ©duction de la tension d’alimentation permise dans les procĂ©dĂ©s CMOS nanomĂ©triques, l’impĂ©dance de sortie limitĂ©e des transistors disponibles, ainsi que les variations de procĂ©dĂ©s ont pour consĂ©quence que plusieurs architectures de circuits analogiques n’offrent plus les performances requises ou ne sont tout simplement plus applicables. Des mĂ©thodes de conception innovatrices doivent ĂȘtre utilisĂ©es et des compromis judicieux doivent ĂȘtre faits afin de maintenir les performances requises. Dans un systĂšme de communication sans-fil, l’oscillateur local (Local Oscillator - LO) est l’un des modules les plus importants puisqu’il sert Ă  gĂ©nĂ©rer la porteuse du lien RF qui sera par la suite modulĂ©e pour transmettre les donnĂ©es. Dans un contexte oĂč la consommation de puissance doit ĂȘtre strictement minimisĂ©e, la gĂ©nĂ©ration d’une frĂ©quence porteuse RF stable dans un procĂ©dĂ© CMOS nanomĂ©trique prĂ©sente des dĂ©fis Ă©normes. Dans cette optique, cette thĂšse se concentre sur la conception, l’analyse, ainsi que sur l’implĂ©mentation de circuits analogiques et RF Ă  basse tension faisant partie d’un synthĂ©tiseur de frĂ©quences Ă  consommation ultra faible utilisant un procĂ©dĂ© CMOS nanomĂ©trique. Tout d’abord, une nouvelle architecture de miroir de courant prĂ©sentant une impĂ©dance de sortie trĂšs Ă©levĂ©e destinĂ© aux applications Ă  faible tension d’alimentation est prĂ©sentĂ©e. Ce miroir de courant de faible complexitĂ© prĂ©sente une rĂ©sistance de sortie trĂšs Ă©levĂ©e et ce pour des tensions de sortie s’approchant des alimentations. Ensuite, une nouvelle architecture de pompe de charges CMOS destinĂ©e aux boucles Ă  verrouillage de phase Ă  faible tension et faible puissance est proposĂ©e afin de contourner les difficultĂ©s causĂ©es par la basse tension d’alimentation et la faible impĂ©dance de sortie des transistors nanomĂ©triques.----------ABSTRACT Implantable biomedical microsystems present a huge potential for medical research. The recent possibility to use CMOS technology to integrate radio-frequency (RF) circuits, baseband signal processing, and even sensors on a same chip has led to a tremendous growth of interest in wireless sensors and their applications. Such microsystems typically include a microprocessor and memory, an energy source, one or more sensors, an analog-to-digital converter (ADC), and a RF transceiver to communicate with a remote base-station or processing unit. In the biomedical field, it is expected that implanting such wireless sensing microsystems could greatly help the medical research community in learning about the progression of some diseases and assess degree of response to treatment. With a minimum feature size that has reduced under 100 nm, CMOS technology has become a viable choice for the implementation of low-power radio-frequency integrated circuits (RFIC) building blocks. However, the reduction of the supply voltage combined with the low output impedance of nanometer transistors have caused many analog and RF circuit solutions to be unsuitable, or even unusable due to voltage headroom constraints. Therefore, new circuit techniques and innovative design approaches are needed in order to meet the required performance level while maintaining low power consumption. In a wireless communications system, the local oscillator (LO) is one of the most important building blocks since it generates the RF carrier signal upon which data is modulated for transmission. In a context where power consumption must be strictly minimized, the generation of a stable RF carrier using a nanometer CMOS process presents huge challenges. In this regard, this thesis focuses on the design, the analysis and the implementation of low-voltage analog and RF circuits used to build an ultra-low power integer-N frequency synthesizer. First, a new current mirror architecture dedicated to low-voltage, low-power applications is presented. The proposed current mirror offers a very high output resistance and an enhanced output voltage range in comparison with other current mirrors similar in architecture. Then, a novel charge pump dedicated to low-power low-voltage PLLs is proposed. The design of this circuit was motivated by the need of a nano-CMOS charge pump that would offer constant current magnitude and minimum current mismatch over a wide range of output voltage, while maintaining power consumption and complexity level as low as possible. A LC resonator-based voltage-controlled oscillator (LC-VCO) that implements a new technique to reduce the impact of process variation on phase noise and power consumption is presented

    Millimeter-Scale and Energy-Efficient RF Wireless System

    Full text link
    This dissertation focuses on energy-efficient RF wireless system with millimeter-scale dimension, expanding the potential use cases of millimeter-scale computing devices. It is challenging to develop RF wireless system in such constrained space. First, millimeter-sized antennae are electrically-small, resulting in low antenna efficiency. Second, their energy source is very limited due to the small battery and/or energy harvester. Third, it is required to eliminate most or all off-chip devices to further reduce system dimension. In this dissertation, these challenges are explored and analyzed, and new methods are proposed to solve them. Three prototype RF systems were implemented for demonstration and verification. The first prototype is a 10 cubic-mm inductive-coupled radio system that can be implanted through a syringe, aimed at healthcare applications with constrained space. The second prototype is a 3x3x3 mm far-field 915MHz radio system with 20-meter NLOS range in indoor environment. The third prototype is a low-power BLE transmitter using 3.5x3.5 mm planar loop antenna, enabling millimeter-scale sensors to connect with ubiquitous IoT BLE-compliant devices. The work presented in this dissertation improves use cases of millimeter-scale computers by presenting new methods for improving energy efficiency of wireless radio system with extremely small dimensions. The impact is significant in the age of IoT when everything will be connected in daily life.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147686/1/yaoshi_1.pd

    LOW-POWER FREQUENCY SYNTHESIS BASED ON INJECTION LOCKING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore